Research Article
BibTex RIS Cite

Uydu tabanlı arazi kullanımının sınıflandırılması için farklı denetimli yöntemlerin karşılaştırmalı analizi: Reyhanlı örneği

Year 2024, Volume: 29 Issue: 3, 707 - 723
https://doi.org/10.37908/mkutbd.1485236

Abstract

Uydu tabanlı arazi kullanımının sınıflandırılması, çevre izlemesinden afet yönetimine kadar çeşitli yeryüzü gözlem uygulamalarında hayati bir rol oynamaktadır. Bu çalışma, Türkiye’nin güneyindeki Reyhanlı ilçesinde, Landsat-9 ve Sentinel-2 uydu görüntülerine uygulanan makine öğrenimi tekniklerinin arazi örtüsü sınıflandırması için karşılaştırmalı bir analizini sunmaktadır. Rastgele Orman (RO), Destek Vektör Makinesi (DVM) ve Maksimum Olabilirlik Sınıflandırması (MOS) olmak üzere üç farklı sınıflandırma algoritması, farklı arazi örtüsü sınıflarını ayırt etme başarısı açısından değerlendirilmiştir. Çalışmada, Coğrafi Bilgi Sistemleri (CBS) yazılımı kullanılarak eşit koşullarda işlenmiş yüksek çözünürlüklü multispektral uydu görüntüleri kullanılmıştır. Görsel inceleme ve istatistiksel değerlendirme, genel doğruluk ve kappa katsayısı da dahil olmak üzere sınıflandırma performansını değerlendirmek için kullanılmıştır. Sentinel-2 ve Landsat-9 uydu görüntülerinin farklı makine öğrenmesi algortimaları ile sınıflandırılması sonucunda en yüksek genel doğruluğun (GD = 0.911, Kappa = 0.879) Sentinel-2 görüntüleri için RF algoritması ile elde edildiği tespit edilmiştir. Bulgular, uydu görüntüsü seçiminin ve algoritma optimizasyonunun doğru arazi örtüsü haritalaması için önemini vurgulamaktadır. Bu çalışma, yerel planlamacılar ve otoriteler için önemli bir bakış açısı sunmakta ve Sentinel-2 görüntüleri ile makine öğrenme tekniklerinin etkili arazi kullanımı, sınıflandırması ve izlenmesi için potansiyelini ortaya koymaktadır.

References

  • Abdelmajeed, A.Y.A., & Juszczak, R. (2024). Challenges and limitations of remote sensing applications in Northern Peatlands: present and future prospects. Remote Sensing, 16 (3), 591. https://doi.org/10.3390/rs16030591
  • Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E.M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35 (10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435
  • Adugna, T., Xu, W., & Fan, J. (2022). Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing, 14 (3), 574. https://doi.org/10.3390/rs14030574
  • Ahady, A.B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7 (1), 24-31. https://doi.org/10.26833/ijeg.860077
  • Ahmad, A., Sakidin, H., Sari, M.Y.A., Amin, A., Sufahani, S.F., & Rasib, A.W. (2021). Naïve bayes classification of high-resolution aerial imagery. International Journal of Advanced Computer Science and Applications, 12 (11). https://doi.org/10.14569/ijacsa.2021.0121120
  • Aldiansyah, S., & Saputra, R.A. (2022). Comparison of machine learning algorithms for land use and land cover analysis using Google Earth Engine (Case study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences, 19 (2), 197-210. http://dx.doi.org/10.30536/j.ijreses.2022.v19.a3803
  • Atasoy, A., & Geçen, R. (2014). Reyhanlı İlçesi topraklarında tuzlanma problemi. Türk Coğrafya Dergisi, 62, 21-28.
  • Bilginer, Ş. (2023). Kuraklığa uyum sürecinde etkili su kullanım yöntemleri ve toprak verimliliğinin iklim-akıllı tarım uygulamaları çerçevesinde incelenmesi: Reyhanlı (Hatay) ilçesi örneği. Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, 104 s.
  • Bouslihim, Y., Kharrou, M.H., Miftah, A., Attou, T., Bouchaou, L., & Chehbouni, A.G. (2022). Comparing pan-sharpened Landsat-9 and Sentinel-2 for land-use classification using machine learning classifiers. Journal of Geovisualization and Spatial Analysis, 6 (35). https://doi.org/10.1007/s41651-022-00130-0
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
  • Camargo, F.F., Sano, E.E., Almeida, C.M., Mura, J.C., & Almeida, T.D. (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11 (13), 1600. https://doi.org/10.3390/rs11131600
  • Castillo, G.V., de Freitas, L.J., Cordeiro, V.A., Orellana, J.B., Reategui-Betancourt, J., Nagy, L., & Matricardi, E.A. (2022). Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest. Journal of Applied Remote Sensing, 16 (1), 014526. https://doi.org/10.1117/1.jrs.16.014526
  • Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R., Artés, M., & Li, C. (2016). Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70-71, 87-103. https://doi.org/10.1016/j.ymssp.2015.08.030
  • Cristóbal, J., Jiménez-Muñoz, J.C., Prakash, A., Mattar, C., Skokovic, D., & Sobrino, J.A. (2018). An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10 (3), 431. https://doi.org/10.3390/rs10030431
  • Dang, V.H., Hoang, N.D., Nguyen, L.M.D., Bui, D.T., & Samui, P. (2020). A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests, 11 (1), 118. https://doi.org/10.3390/f11010118
  • Darem, A.A., Alhashmi, A.A., Almadani, A.M., Alanazi, A.K., & Sutantra, G.A. (2023). Development of a map for land use and land cover classification of the Northern Border Region using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 26, 341-350. https://doi.org/10.1016/j.ejrs.2023.04.005
  • Daribayev, B., Mukhanbet, A.A., Nurakhov, Y., & Imankulov, T. (2021). Implementation of the solution to the oil displacement problem using machine learning classifiers and neural networks. Eastern-European Journal of Enterprise Technologies, 5 (4 (113)), 55-63. https://doi.org/10.15587/1729-4061.2021.241858
  • Deilmai, B.R., Ahmad, B.B., & Zabihi, H. (2014). Comparison of two classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia. IOP Conference Series: Earth and Environmental Science, 20 (1), 012052. https://doi.org/10.1088/1755-1315/20/1/012052
  • Dhakal, S., Kandel, S., Puri, L., & Shrestha, S. (2022). Assessment on land use land cover mapping: Sentinel-2 versus Landsat-9. Forestry: Journal of Institute of Forestry, Nepal, 19 (01), 56-63. https://doi.org/10.3126/forestry.v19i01.55704
  • Fröhlich, B., Bach, E., Walde, I., Hese, S., Schmullius, C., & Denzler, J. (2013). Land cover classification of satellite images using contextual information. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W1, 1-6. https://doi.org/10.5194/isprsannals-ii-3-w1-1-2013
  • Gašparović, M., Zorić, Š., & Singh, S.K. (2021). Urbanisation impact on creation of heat islands in large cities. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2021, 313-318. https://doi.org/10.5194/isprs-archives-xliii-b3-2021-313-2021
  • Geçen, R. (2019). Uydu görüntüsü kullanılarak tarımsal alanlarda parsel-tabanlı ürün sınıflandırması: Amik Ovası örneği. E Akköprü ve MF Döker (Eds.), Coğrafya araştırmalarında coğrafi bilgi sistemleri uygulamaları (1.Baskı, s. 241-266). Pegem.
  • Ghosh, A., & Joshi, P.K. (2014). A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. International Journal of Applied Earth Observation and Geoinformation, 26, 298-311. https://doi.org/10.1016/j.jag.2013.08.011
  • Gunlu, A. (2021). Comparison of different classification approaches for land cover classification using multispectral and fusion satellite data: A case study in Ören Forest Planning Unit. Journal of Bartin Faculty of Forestry, 23 (1), 306-322. https://doi.org/10.24011/barofd.882471
  • Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (7), 2217-2226. https://doi.org/10.1109/jstars.2019.2918242
  • Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., & Benabdelouahab, T. (2019). The performance of random forest classification based on phenological metrics derived from Sentinel-2 and Landsat 8 to map crop cover in an irrigated semiarid region. Remote Sensing Earth Systems Science, 2 (4), 208-224. https://doi.org/10.1007/s41976-019-00023-9
  • Irvem, A., & Ozbuldu, M. (2023). Downscaling of the land surface temperature data obtained at four different dates in a year using the GWR model: a case study in Antakya, Turkey. Journal of the Indian Society of Remote Sensing, 51, 1241-1252. https://doi.org/10.1007/s12524-023-01700-5
  • Islami, F.A., Tarigan, S., Wahjunie, E.D., & Dasanto, B.D. (2022). Accuracy assessment of land use change analysis using google earth in sadar watershed mojokerto regency. IOP Conference Series: Earth and Environmental Science, 950 (1), 012091. https://doi.org/10.1088/1755-1315/950/1/012091
  • Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran. SN Applied Sciences, 1, 1448. https://doi.org/10.1007/s42452-019-1527-8
  • Jombo, S., & Adelabu, S. (2023). Evaluating Landsat-8, Landsat-9, and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area. GeoJournal, 88 (1), 377-399. https://doi.org/10.1007/s10708-023-10982-8
  • Khaliq, A., Comba, L., Biglia, A., Aimonino, D.R., Chiaberge, M., & Gay, P. (2019). Comparison of satellite and uav-based multispectral imagery for vineyard variability assessment. Remote Sensing, 11 (4), 436. https://doi.org/10.3390/rs11040436
  • Leeuwen, B.V., Tobak, Z., & Kovács, F. (2020). Comparison of different machine learning techniques for land use/land cover classification of medium resolution optical satellite imagery focusing on temporary inundated areas. Journal of Environmental Geography, 13 (1-2), 43-52. https://doi.org/10.2478/jengeo-2020-0005
  • Li, S., & Xu, X. (2021). Study on remote sensing monitoring model of agricultural drought based on random forest deviation correction. INMATEH Agricultural Engineering, 413-422. https://doi.org/10.35633/inmateh-64-41
  • Ma, L., & Fan, S. (2017). Cure-smote algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinformatics, 18 (1). https://doi.org/10.1186/s12859-017-1578-z
  • Manessa, M.D.M., Ummam, M.A.F., Efriana, A.F., Semedi, J.M., & Ayu, F. (2024). Assessing Derawan Island’s Coral Reefs over two decades: A machine learning classification perspective. Sensors, 24 (2), 466. https://doi.org/10.3390/s24020466
  • McCorkel, J., Montanaro, M., Efremova, B., Pearlman, A., Wenny, B.N., Lunsford, A., & Reuter, D.C. (2018). Landsat-9 thermal infrared sensor 2 characterization plan overview. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Spain, 8845-8848.
  • Mishra, P.K., Rai, A., & Rai, S.C. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23 (2), 133-143. https://doi.org/10.1016/j.ejrs.2019.02.001
  • Mondal, A., Kundu, S., Chandniha, S.K., Shukla, R., & Mishra, P.K. (2012). Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. International Journal of Remote Sensing and GIS, 1 (2), 116-123.
  • Morgan, G.R., Wang, C., Li, Z., Schill, S.R., & Morgan, D.R. (2022). Deep learning of high-resolution aerial imagery for coastal marsh change detection: a comparative study. ISPRS International Journal of Geo-Information, 11 (2), 100. https://doi.org/10.3390/ijgi11020100
  • Nyamekye, C., Ghansah, B., Agyapong, E., Obuobie, E., Awuah, A., & Kwofie, S. (2021). Examining the performances of true color RGB bands from Landsat-8, Sentinel-2 and UAV as stand-alone data for mapping artisanal and small-scale mining (ASM). Remote Sensing Applications: Society and Environment, 24, 100655. https://doi.org/10.1016/j.rsase.2021.100655
  • Palanisamy, P.A., Jain, K., & Bonafoni, S. (2023). Machine learning classifier evaluation for different ınput combinations: a case study with Landsat 9 and Sentinel-2 data. Remote Sensing, 15 (15), 3241. https://doi.org/10.3390/rs15133241
  • Paul, S., & Kumar, D.N. (2019). Comparison of Landsat-8 and Sentinel-2 data for classification of Rabi crops over Karnataka, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W6, 579-584. https://doi.org/10.5194/isprs-archives-xlii-3-w6-579-2019
  • Peng, X., Liu, H., Chen, Y., Qiao, C., Wang, J., Li, H., & Zhao, A. (2021). A method to identify dacrydium pierrei hickel using unmanned aerial vehicle multi-source remote sensing data in a chinese tropical rainforest. Journal of the Indian Society of Remote Sensing, 50 (1), 25-35. https://doi.org/10.1007/s12524-021-01453-z
  • Rakwatin, P., Longépé, N., Isoguchi, O., Shimada, M., & Uryu, Y. (2010). Mapping tropical forest using alos palsar 50m resolution data with multiscale glcm analysis. 2010 IEEE International Geoscience and Remote Sensing Symposium, USA, 1234-1237. https://doi.org/10.1109/igarss.2010.5651347
  • Razafinimaro, A., Hajalalaina, A.R., Rakotonirainy, H.L., & Zafimarina, R. (2022). Land cover classification based optical satellite images using machine learning algorithms. International Journal of Advances in Intelligent Informatics, 8 (3), 362-380. https://doi.org/10.26555/ijain.v8i3.803
  • Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8 (4), 611-622. https://doi.org/10.4236/ijg.2017.84033
  • Saboori, M., Homayouni, S., Shah-Hosseini, R., & Zhang, Y. (2022). Optimum feature and classifier selection for accurate urban land use/cover mapping from very high resolution satellite imagery. Remote. Sensing, 14 (9), 2097. https://doi.org/10.3390/rs14092097
  • Shi, Y., Qi, Z., Li, X., Niu, N., & Zhang, H. (2019). Urban land use and land cover classification using multisource remote sensing images and social media data. Remote Sensing, 11 (22), 2719. https://doi.org/10.3390/rs11222719
  • Simons, G., Bastiaanssen, W., Ngô, L.A., Hain, C., Anderson, M.C., & Senay, G.B. (2016). Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies: a case study for the red river basin. Remote Sensing, 8 (4), 279. https://doi.org/10.3390/rs8040279
  • Sisodia, P.S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), India, 1-4. https://doi.org/10.1109/icraie.2014.6909319
  • Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations - a review. Remote Sensing, 12 (7), 1135. https://doi.org/10.3390/rs12071135
  • Tariq, A., Hong, S.Y., Gagnon, A.S., Li, Q., Mumtaz, F., Hysa, A., & Munir, I. (2021). Assessing burned areas in wildfires and prescribed fires with spectral indices and sar images in the margalla hills of pakistan. Forests, 12 (10), 1371. https://doi.org/10.3390/f12101371
  • Toosi, N.B., Soffianian, A.R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L.T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662. https://doi.org/10.1016/j.gecco.2019.e00662
  • Topaloglu, R.H., Sertel, E., & Musaoğlu, N. (2016). Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1055-1059. https://doi.org/10.5194/isprsarchives-xli-b8-1055-2016
  • Tricht, K.V., Gobin, A., Gilliams, S., & Piccard, I. (2018). Synergistic use of Radar Sentinel-1 and Optical Sentinel-2 imagery for crop mapping: a case study for Belgium. Remote Sensing, 10, 1642. https://doi.org/10.3390/rs10101642
  • Turner, L., Wagner, T.J., Auclair, P., & Langhals, B.T. (2022). Machine learning land cover and land use classification of 4-band satellite imagery. Faculty Publications, 1407, 1-17.
  • Vapnik, V. (2013). The nature of statistical learning theory (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-3264-1
  • Wang, Y., Ma, J., Xiao, X., Wang, X., Dai, S., & Zhao, B. (2019). Long-term dynamic of Poyang Lake surface water: a mapping work based on the Google Earth Engine cloud platform. Remote Sensing, 11 (3), 313. https://doi.org/10.3390/rs11030313
  • Wei, J., Shang, J., Han, L., Li, X., & Li, X. (2023). Parameter optimization strategy of random forest algorithm for land use classification. Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), China, 1255123. https://doi.org/10.1117/12.2668073
  • Zhang, C., & Li, X. (2022). Land use and land cover mapping in the era of big data. Land, 11 (10), 1692. https://doi.org/10.3390/land11101692
  • Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P., & Zhang, S. (2018). Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery. Sensors, 18 (11), 3717. https://doi.org/10.3390/s18113717
  • Zhao, Y., Gong, P., Yu, L., Hu, L., Li, X., Li, C., Zhang, H., Zheng, Y., Wang, J., Zhao, Y., Cheng, Q., Liu, C., Liu, S., & Wang, X. (2014). Towards a common validation sample set for global land-cover mapping. International Journal of Remote Sensing, 35 (13), 4795-4814. https://doi.org/10.1080/01431161.2014.930202
  • Zhu, Z., Woodcock, C.E., Rogan, J., & Kellndorfer, J. (2012). Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sensing of Environment, 117, 72-82. https://doi.org/10.1016/j.rse.2011.07.020

Comparative analysis of different supervised methods for satellite-based land-use classification: A case study of Reyhanlı

Year 2024, Volume: 29 Issue: 3, 707 - 723
https://doi.org/10.37908/mkutbd.1485236

Abstract

Satellite-based land-use classification plays a crucial role in various Earth observation applications, ranging from environmental monitoring to disaster management. This study presents a comparative analysis of machine learning techniques applied to land cover classification using Landsat-9 and Sentinel-2 satellite imagery in the Reyhanlı district in southern Türkiye. Three different classification algorithms, Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood Classification (MLC), were evaluated for their ability to distinguish different land cover classes. High resolution multispectral satellite imagery processed under the same conditions using Geographic Information System (GIS) software was utilized in this study. Visual inspection and statistical evaluation, including overall accuracy and kappa coefficient, were employed to assess classification performance. The classification of Sentinel-2 and Landsat-9 satellite imagery using different machine learning algorithms resulted in the highest overall accuracy (OA = 0.911, Kappa = 0.879) for Sentinel 2 imagery with the RF algorithm. These findings highlight the importance of satellite image selection and algorithm optimization for accurate land cover mapping. This study provides valuable insights for local planners and authorities and underscores the potential of Sentinel-2 imagery combined with machine learning techniques for effective land-use classification and monitoring.

References

  • Abdelmajeed, A.Y.A., & Juszczak, R. (2024). Challenges and limitations of remote sensing applications in Northern Peatlands: present and future prospects. Remote Sensing, 16 (3), 591. https://doi.org/10.3390/rs16030591
  • Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E.M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35 (10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435
  • Adugna, T., Xu, W., & Fan, J. (2022). Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing, 14 (3), 574. https://doi.org/10.3390/rs14030574
  • Ahady, A.B., & Kaplan, G. (2022). Classification comparison of Landsat-8 and Sentinel-2 data in Google Earth Engine, study case of the city of Kabul. International Journal of Engineering and Geosciences, 7 (1), 24-31. https://doi.org/10.26833/ijeg.860077
  • Ahmad, A., Sakidin, H., Sari, M.Y.A., Amin, A., Sufahani, S.F., & Rasib, A.W. (2021). Naïve bayes classification of high-resolution aerial imagery. International Journal of Advanced Computer Science and Applications, 12 (11). https://doi.org/10.14569/ijacsa.2021.0121120
  • Aldiansyah, S., & Saputra, R.A. (2022). Comparison of machine learning algorithms for land use and land cover analysis using Google Earth Engine (Case study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences, 19 (2), 197-210. http://dx.doi.org/10.30536/j.ijreses.2022.v19.a3803
  • Atasoy, A., & Geçen, R. (2014). Reyhanlı İlçesi topraklarında tuzlanma problemi. Türk Coğrafya Dergisi, 62, 21-28.
  • Bilginer, Ş. (2023). Kuraklığa uyum sürecinde etkili su kullanım yöntemleri ve toprak verimliliğinin iklim-akıllı tarım uygulamaları çerçevesinde incelenmesi: Reyhanlı (Hatay) ilçesi örneği. Yüksek Lisans Tezi, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, 104 s.
  • Bouslihim, Y., Kharrou, M.H., Miftah, A., Attou, T., Bouchaou, L., & Chehbouni, A.G. (2022). Comparing pan-sharpened Landsat-9 and Sentinel-2 for land-use classification using machine learning classifiers. Journal of Geovisualization and Spatial Analysis, 6 (35). https://doi.org/10.1007/s41651-022-00130-0
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
  • Camargo, F.F., Sano, E.E., Almeida, C.M., Mura, J.C., & Almeida, T.D. (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11 (13), 1600. https://doi.org/10.3390/rs11131600
  • Castillo, G.V., de Freitas, L.J., Cordeiro, V.A., Orellana, J.B., Reategui-Betancourt, J., Nagy, L., & Matricardi, E.A. (2022). Assessment of selective logging impacts using UAV, Landsat, and Sentinel data in the Brazilian Amazon rainforest. Journal of Applied Remote Sensing, 16 (1), 014526. https://doi.org/10.1117/1.jrs.16.014526
  • Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R., Artés, M., & Li, C. (2016). Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70-71, 87-103. https://doi.org/10.1016/j.ymssp.2015.08.030
  • Cristóbal, J., Jiménez-Muñoz, J.C., Prakash, A., Mattar, C., Skokovic, D., & Sobrino, J.A. (2018). An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing, 10 (3), 431. https://doi.org/10.3390/rs10030431
  • Dang, V.H., Hoang, N.D., Nguyen, L.M.D., Bui, D.T., & Samui, P. (2020). A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility. Forests, 11 (1), 118. https://doi.org/10.3390/f11010118
  • Darem, A.A., Alhashmi, A.A., Almadani, A.M., Alanazi, A.K., & Sutantra, G.A. (2023). Development of a map for land use and land cover classification of the Northern Border Region using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 26, 341-350. https://doi.org/10.1016/j.ejrs.2023.04.005
  • Daribayev, B., Mukhanbet, A.A., Nurakhov, Y., & Imankulov, T. (2021). Implementation of the solution to the oil displacement problem using machine learning classifiers and neural networks. Eastern-European Journal of Enterprise Technologies, 5 (4 (113)), 55-63. https://doi.org/10.15587/1729-4061.2021.241858
  • Deilmai, B.R., Ahmad, B.B., & Zabihi, H. (2014). Comparison of two classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia. IOP Conference Series: Earth and Environmental Science, 20 (1), 012052. https://doi.org/10.1088/1755-1315/20/1/012052
  • Dhakal, S., Kandel, S., Puri, L., & Shrestha, S. (2022). Assessment on land use land cover mapping: Sentinel-2 versus Landsat-9. Forestry: Journal of Institute of Forestry, Nepal, 19 (01), 56-63. https://doi.org/10.3126/forestry.v19i01.55704
  • Fröhlich, B., Bach, E., Walde, I., Hese, S., Schmullius, C., & Denzler, J. (2013). Land cover classification of satellite images using contextual information. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W1, 1-6. https://doi.org/10.5194/isprsannals-ii-3-w1-1-2013
  • Gašparović, M., Zorić, Š., & Singh, S.K. (2021). Urbanisation impact on creation of heat islands in large cities. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2021, 313-318. https://doi.org/10.5194/isprs-archives-xliii-b3-2021-313-2021
  • Geçen, R. (2019). Uydu görüntüsü kullanılarak tarımsal alanlarda parsel-tabanlı ürün sınıflandırması: Amik Ovası örneği. E Akköprü ve MF Döker (Eds.), Coğrafya araştırmalarında coğrafi bilgi sistemleri uygulamaları (1.Baskı, s. 241-266). Pegem.
  • Ghosh, A., & Joshi, P.K. (2014). A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. International Journal of Applied Earth Observation and Geoinformation, 26, 298-311. https://doi.org/10.1016/j.jag.2013.08.011
  • Gunlu, A. (2021). Comparison of different classification approaches for land cover classification using multispectral and fusion satellite data: A case study in Ören Forest Planning Unit. Journal of Bartin Faculty of Forestry, 23 (1), 306-322. https://doi.org/10.24011/barofd.882471
  • Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (7), 2217-2226. https://doi.org/10.1109/jstars.2019.2918242
  • Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., Elmansouri, L., Tychon, B., & Benabdelouahab, T. (2019). The performance of random forest classification based on phenological metrics derived from Sentinel-2 and Landsat 8 to map crop cover in an irrigated semiarid region. Remote Sensing Earth Systems Science, 2 (4), 208-224. https://doi.org/10.1007/s41976-019-00023-9
  • Irvem, A., & Ozbuldu, M. (2023). Downscaling of the land surface temperature data obtained at four different dates in a year using the GWR model: a case study in Antakya, Turkey. Journal of the Indian Society of Remote Sensing, 51, 1241-1252. https://doi.org/10.1007/s12524-023-01700-5
  • Islami, F.A., Tarigan, S., Wahjunie, E.D., & Dasanto, B.D. (2022). Accuracy assessment of land use change analysis using google earth in sadar watershed mojokerto regency. IOP Conference Series: Earth and Environmental Science, 950 (1), 012091. https://doi.org/10.1088/1755-1315/950/1/012091
  • Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran. SN Applied Sciences, 1, 1448. https://doi.org/10.1007/s42452-019-1527-8
  • Jombo, S., & Adelabu, S. (2023). Evaluating Landsat-8, Landsat-9, and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area. GeoJournal, 88 (1), 377-399. https://doi.org/10.1007/s10708-023-10982-8
  • Khaliq, A., Comba, L., Biglia, A., Aimonino, D.R., Chiaberge, M., & Gay, P. (2019). Comparison of satellite and uav-based multispectral imagery for vineyard variability assessment. Remote Sensing, 11 (4), 436. https://doi.org/10.3390/rs11040436
  • Leeuwen, B.V., Tobak, Z., & Kovács, F. (2020). Comparison of different machine learning techniques for land use/land cover classification of medium resolution optical satellite imagery focusing on temporary inundated areas. Journal of Environmental Geography, 13 (1-2), 43-52. https://doi.org/10.2478/jengeo-2020-0005
  • Li, S., & Xu, X. (2021). Study on remote sensing monitoring model of agricultural drought based on random forest deviation correction. INMATEH Agricultural Engineering, 413-422. https://doi.org/10.35633/inmateh-64-41
  • Ma, L., & Fan, S. (2017). Cure-smote algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinformatics, 18 (1). https://doi.org/10.1186/s12859-017-1578-z
  • Manessa, M.D.M., Ummam, M.A.F., Efriana, A.F., Semedi, J.M., & Ayu, F. (2024). Assessing Derawan Island’s Coral Reefs over two decades: A machine learning classification perspective. Sensors, 24 (2), 466. https://doi.org/10.3390/s24020466
  • McCorkel, J., Montanaro, M., Efremova, B., Pearlman, A., Wenny, B.N., Lunsford, A., & Reuter, D.C. (2018). Landsat-9 thermal infrared sensor 2 characterization plan overview. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Spain, 8845-8848.
  • Mishra, P.K., Rai, A., & Rai, S.C. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23 (2), 133-143. https://doi.org/10.1016/j.ejrs.2019.02.001
  • Mondal, A., Kundu, S., Chandniha, S.K., Shukla, R., & Mishra, P.K. (2012). Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. International Journal of Remote Sensing and GIS, 1 (2), 116-123.
  • Morgan, G.R., Wang, C., Li, Z., Schill, S.R., & Morgan, D.R. (2022). Deep learning of high-resolution aerial imagery for coastal marsh change detection: a comparative study. ISPRS International Journal of Geo-Information, 11 (2), 100. https://doi.org/10.3390/ijgi11020100
  • Nyamekye, C., Ghansah, B., Agyapong, E., Obuobie, E., Awuah, A., & Kwofie, S. (2021). Examining the performances of true color RGB bands from Landsat-8, Sentinel-2 and UAV as stand-alone data for mapping artisanal and small-scale mining (ASM). Remote Sensing Applications: Society and Environment, 24, 100655. https://doi.org/10.1016/j.rsase.2021.100655
  • Palanisamy, P.A., Jain, K., & Bonafoni, S. (2023). Machine learning classifier evaluation for different ınput combinations: a case study with Landsat 9 and Sentinel-2 data. Remote Sensing, 15 (15), 3241. https://doi.org/10.3390/rs15133241
  • Paul, S., & Kumar, D.N. (2019). Comparison of Landsat-8 and Sentinel-2 data for classification of Rabi crops over Karnataka, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W6, 579-584. https://doi.org/10.5194/isprs-archives-xlii-3-w6-579-2019
  • Peng, X., Liu, H., Chen, Y., Qiao, C., Wang, J., Li, H., & Zhao, A. (2021). A method to identify dacrydium pierrei hickel using unmanned aerial vehicle multi-source remote sensing data in a chinese tropical rainforest. Journal of the Indian Society of Remote Sensing, 50 (1), 25-35. https://doi.org/10.1007/s12524-021-01453-z
  • Rakwatin, P., Longépé, N., Isoguchi, O., Shimada, M., & Uryu, Y. (2010). Mapping tropical forest using alos palsar 50m resolution data with multiscale glcm analysis. 2010 IEEE International Geoscience and Remote Sensing Symposium, USA, 1234-1237. https://doi.org/10.1109/igarss.2010.5651347
  • Razafinimaro, A., Hajalalaina, A.R., Rakotonirainy, H.L., & Zafimarina, R. (2022). Land cover classification based optical satellite images using machine learning algorithms. International Journal of Advances in Intelligent Informatics, 8 (3), 362-380. https://doi.org/10.26555/ijain.v8i3.803
  • Rwanga, S.S., & Ndambuki, J.M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8 (4), 611-622. https://doi.org/10.4236/ijg.2017.84033
  • Saboori, M., Homayouni, S., Shah-Hosseini, R., & Zhang, Y. (2022). Optimum feature and classifier selection for accurate urban land use/cover mapping from very high resolution satellite imagery. Remote. Sensing, 14 (9), 2097. https://doi.org/10.3390/rs14092097
  • Shi, Y., Qi, Z., Li, X., Niu, N., & Zhang, H. (2019). Urban land use and land cover classification using multisource remote sensing images and social media data. Remote Sensing, 11 (22), 2719. https://doi.org/10.3390/rs11222719
  • Simons, G., Bastiaanssen, W., Ngô, L.A., Hain, C., Anderson, M.C., & Senay, G.B. (2016). Integrating global satellite-derived data products as a pre-analysis for hydrological modelling studies: a case study for the red river basin. Remote Sensing, 8 (4), 279. https://doi.org/10.3390/rs8040279
  • Sisodia, P.S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), India, 1-4. https://doi.org/10.1109/icraie.2014.6909319
  • Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations - a review. Remote Sensing, 12 (7), 1135. https://doi.org/10.3390/rs12071135
  • Tariq, A., Hong, S.Y., Gagnon, A.S., Li, Q., Mumtaz, F., Hysa, A., & Munir, I. (2021). Assessing burned areas in wildfires and prescribed fires with spectral indices and sar images in the margalla hills of pakistan. Forests, 12 (10), 1371. https://doi.org/10.3390/f12101371
  • Toosi, N.B., Soffianian, A.R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L.T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662. https://doi.org/10.1016/j.gecco.2019.e00662
  • Topaloglu, R.H., Sertel, E., & Musaoğlu, N. (2016). Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1055-1059. https://doi.org/10.5194/isprsarchives-xli-b8-1055-2016
  • Tricht, K.V., Gobin, A., Gilliams, S., & Piccard, I. (2018). Synergistic use of Radar Sentinel-1 and Optical Sentinel-2 imagery for crop mapping: a case study for Belgium. Remote Sensing, 10, 1642. https://doi.org/10.3390/rs10101642
  • Turner, L., Wagner, T.J., Auclair, P., & Langhals, B.T. (2022). Machine learning land cover and land use classification of 4-band satellite imagery. Faculty Publications, 1407, 1-17.
  • Vapnik, V. (2013). The nature of statistical learning theory (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-3264-1
  • Wang, Y., Ma, J., Xiao, X., Wang, X., Dai, S., & Zhao, B. (2019). Long-term dynamic of Poyang Lake surface water: a mapping work based on the Google Earth Engine cloud platform. Remote Sensing, 11 (3), 313. https://doi.org/10.3390/rs11030313
  • Wei, J., Shang, J., Han, L., Li, X., & Li, X. (2023). Parameter optimization strategy of random forest algorithm for land use classification. Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), China, 1255123. https://doi.org/10.1117/12.2668073
  • Zhang, C., & Li, X. (2022). Land use and land cover mapping in the era of big data. Land, 11 (10), 1692. https://doi.org/10.3390/land11101692
  • Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P., & Zhang, S. (2018). Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery. Sensors, 18 (11), 3717. https://doi.org/10.3390/s18113717
  • Zhao, Y., Gong, P., Yu, L., Hu, L., Li, X., Li, C., Zhang, H., Zheng, Y., Wang, J., Zhao, Y., Cheng, Q., Liu, C., Liu, S., & Wang, X. (2014). Towards a common validation sample set for global land-cover mapping. International Journal of Remote Sensing, 35 (13), 4795-4814. https://doi.org/10.1080/01431161.2014.930202
  • Zhu, Z., Woodcock, C.E., Rogan, J., & Kellndorfer, J. (2012). Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sensing of Environment, 117, 72-82. https://doi.org/10.1016/j.rse.2011.07.020
There are 63 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Araştırma Makalesi
Authors

Mustafa Özbuldu 0000-0002-5359-8750

Yunus Emre Şekerli 0000-0002-7954-8268

Early Pub Date December 3, 2024
Publication Date
Submission Date May 16, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Özbuldu, M., & Şekerli, Y. E. (2024). Comparative analysis of different supervised methods for satellite-based land-use classification: A case study of Reyhanlı. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(3), 707-723. https://doi.org/10.37908/mkutbd.1485236

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download