Research Article
BibTex RIS Cite

The effect of silicon applications on seedling growth stress parameters in lettuce (Lactuca sativa L.) under salt stress conditions

Year 2025, Volume: 30 Issue: 1, 72 - 82, 26.04.2025
https://doi.org/10.37908/mkutbd.1496859

Abstract

Salt stress prevents plant growth and development by disrupting osmotic and ionic balance. Inthisstudy; As a result of silicon (Si) application, which can activate tolerance mechanism sagainst salt stress in lettuce seedlings; Changes in antioxidant (SOD, CAT, APX, POD) and physiological parameters (proline, leaf chlorophyllratio, leaf membrane permeability and relative water content) effective on seedling growth were investigated. Control plants grew beter than plants treated with only salt. As a result of Si+100 mM NaCl and Si+50 mM NaCl applications; Increases between 176% and 339% in SOD, CAT, APX, POD levels, increases between 26.9% and 28.1% in leaf chlorophyll and moisture content and decreases between 15.2% and 76.4% in leaf membrane damage were determined. The relationship between proline accumulation and antioxidant enzyme activities was effective with Si application and showed that plants improved their defense against salt stress. Plant development decreased according to the severity of salt as a result of only salt applications. Itwasdeterminedthat I50x100kg.ha-1Si interaction was moreeffective on plantgrowth in allplots.

Supporting Institution

Erciyes University Scientific Research Projects Coordination Unit

Project Number

FYL-2022-11632

References

  • Abdelaal, K.A., Mazrou, Y.S., & Hafez, Y.M. (2020). Silicon foliar application mitigates salt stress in sweet peper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruityield. Plants, 9 (6), 733. https://doi.org/10.3390/plants9060733
  • Alp, Y., &Kabay, T. (2019). The effect of drought stress on antioxidative enzyme and nutrient exchange in some tomato genotypes. Turkish Journal of Agricultural and Natural Sciences, 6 (1), 71-77. https://doi.org/10.30910/turkjans.515352
  • Al-aghabary, K., Zhu, Z., & Shi, Q. (2005). Influence of siliconsupply on chlorophyllcontent, chlorophyll fluorescence, andantioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27 (12), 2101-2115. https://doi.org/10.1081/PLN-200034641
  • Anderson, D.L., Snyder, G.H., &Martin, F.G. (1991). Multi‐year response of sugarcane to calcium silicate slag on Everglades histosols. Agronomy Journal, 83 (5), 870-874. https://doi.org/10.2134/agronj1991.00021962008300050019x
  • Adejumobi, M.A., Alonge, T.A., &Ojo, O.I. (2016). A review of the techniques for monitoring soilsalinity in irrigated fields. AIMS, 2, 167-170.
  • Barr, H.D., & Weatherley, P.E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15 (3), 413-428. https://doi.org/10.1071/BI9620413
  • Bates, L.S., Waldren, R.P.A., &Teare, I.D. (1973). Rapiddetermination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamidegels. Analytical Biochemistry, 44 (1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Bernardes, P.M., Mengarda, L.H.G., Lopes, J.C., Nogueira, M.U., &Rodrigues, L.L. (2015). Qualidadefisiológica de sementes de repolho de alta e baixa viabilidade sob estresse salino. Nucleus, 12 (1), 77-86. https://doi.org/10.37378/1982.2278.1105
  • Boling, L., Prabhakaran, S., & Abinaya, M. (2019). Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants, 8, 307. https://doi.org/10.3390/plants8090307
  • Bokhari, U.G., &Trent, J. D. (1985). Proline concentrations in water stressed grasses. Rangeland Ecology & Management/Journal of Range Management Archives, 38 (1), 37-38. https://doi.org/10.2307/3899329
  • Çaylak, E. (2011). Oxidative stress and antioxidants in animals and plants. Journal of Medical Research, 9 (1), 73-83. https://doi.org/10.3168/jds.S0022-0302(93)77620-1
  • Fernandez-Garcia, N., Cerda, A., & Carvajal, M. (2003). Grafting, a useful technique for improving salinity tolerance of tomato?. In International Symposium on Managing Greenhouse Crops in Saline Environment, (pp. 251-256). https://doi.org/10.17660/ActaHortic.2003.609.37
  • De Souza Lemos Neto, H., de Almeida Guimarães, M., Sampaio, I.M.G., de Araújo Hendges, A.R.A., de Oliveira, A.B., & Filho, S.M. (2018). Silicon (Si) reduces the effects of salt stress on germination and initial growth of lettuce (Lactuca sativa L.). Australian Journal of Crop Science, 12 (9), 1410-1418. https://doi.org/10.21475/ajcs.18.12.09.PNE1074
  • Ghorbanpour, M., Mohammadi, H., &Kariman, K. (2020). Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environmental Science: Nano, 7 (2), 443-461. https://doi.org/10.1039/C9EN00973F
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in potsunder drought. Plant Science, 169 (2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
  • Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R., Römheld, V., Mimmo, T., Scampicchio, M., Dalla Costa, L., & Cesco, S. (2012). Beneficial effects of silicon on hydroponically grown cornsalad (Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry, 56, 14-23. https://doi.org/10.1016/j.plaphy.2012.04.002
  • Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T., & Honna, T. (2002). Ureaand manure effect on growt hand mineral contents of maize under saline conditions. Journal of Plant Nutrition, 25 (1), 189-200. https://doi.org/10.1081/PLN-100108790
  • Kacar, B. (1972). Chemical analysis of soil and plant. Ankara University. Faculty of Agriculture Publication No: 53, A.U. Press, Ankara.
  • Kabay, T. (2019). Effects of different potassium doses on development of high temperature-sensitive bean plants. Fresenius Environmental Bulletin, 28 (1), 320-325. https://doi.org/10.24326/asphc.2020.4.6
  • Kalefetoğlu, T., & Ekmekci, Y. (2005). The effects of drought on plant sand tolerance mechanisms. Gazi University Journal of Science, 18 (4), 723-740.
  • Kuşvuran, S., & Abak, K. (2012). Response of melon genotypes to drought stress. Çukurova University Journal of Science and Engineering, 28 (5).
  • Larcher, W. (1995). Physiological plant ecology. Published by Springer, ISBN 0–387–09795–3, New York, 506 p.
  • Lima, M.D.A., Castro, V.F.D., Vidal, J.B., &Enéas-Filho, J. (2011). Aplicação de silício em milho e feijão-de-corda sob estresse salino. Revista Ciência Agronômica, 42, 398-403. https://doi.org/10.1590/S1806-66902011000200019
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680-685. https://doi.org/10.1038/227680a0
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78 (3), 389-398. https://doi.org/10.1006/anbo.1996.0134
  • Manivannan, A., Soundararajan, P., Muneer, S., Ko, C.H., & Jeong, B.R. (2016). Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International, 2016. https://doi.org/10.1155/2016/3076357
  • Muneer, S., Park, Y.G., Manivannan, A., Soundararajan, P., & Jeong, B.R. (2014). Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. International Journal of Molecular Sciences, 15 (12), 21803-21824. https://doi.org/10.3390/ijms151221803
  • Munns, R. (2002). Comparative physiology of salt and waterstress. Plant, Cell & Environment, 25 (2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22 (5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Orcutt, D.M., & Nilsen, E.T. (1996). The physiology of plants under stress. Soil and Biotic Factors, pp:177-237, John Wiley&Sons, inc. NY. https://doi.org/10.3389/fpls.2014.00086
  • Osakabe, Y., Osakabe, K., Shinozaki, K., &Tran, L.S.P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 76566. https://doi.org/10.3389/fpls.2014.00086
  • Öztekin, G.B., Tüzel, Y., & Tüzel, İ.H. (2017). Serada topraksız domates yetiştiriciliğinde silisyumun tuz stresine etkisi. Akademik Ziraat Dergisi, 6, 243-256.
  • Oztekin, G.B., Tuzel, Y., Tuzel, I.H., & Tepecik, M. (2018). Effects of silicon on tomato grown in substrate culture under salinity stress. Fresenius Environmental Bulletin, 27 (8), 5520-5530.
  • Rodrigues, F.D.A., Oliveira, L.D., Korndörfer, A.P., & Korndörfer, G.H. (2011). Silício: um elemento benéfico e importante para as plantas. Informações Agronomicas, 134 (1), 14-20.
  • Romero-Aranda, R., Yeo, A.R., Flowers, T.J., & Cuartero, J. (2000). Variability for some physiological characters affecting salt tolerance in tomato. In International Symposium on Techniquesto Control Salination for Horticultural Productivity, (pp. 435-441). https://doi.org/10.17660/ActaHortic.2002.573.52
  • Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S.A., Zia-Ur-Rehman, M., Qayyum, M.F. & Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environmental Science and Pollution Research, 22, 15416-15431. https://doi.org/10.1007/s11356-015-5305-x
  • Shannon, M.C., & Grieve, C.M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78 (1-4), 5-38. https://doi.org/10.1016/S0304-4238(98)00189-7
  • Suyum, K., Dasgan, H.Y., Sari, N., Kusvuran, S., Aydoner, G., Akyol, M., Akhoundnejad, Y., Solmaz, I., & Bol, A. (2012). Genotypic variation in the response of water melon genotypes to alinity and drought stresses. https://cabidigitallibrary.org/terms-and-conditions
  • Secco, L.B., Queiroz, S.O., Dantas, B.F., de Souza, Y.A., & da Silva, P.P. (2010). Qualidade de sementes de acessos de melão, Cucumis melo L., em condições de estresse salino. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 5 (2), 5. http://revista.gvaa.com.br
  • Seevers, P.M., Daly, J.M., & Catedral, F.F. (1971). The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiology, 48 (3), 353-360. https://doi.org/10.1104/pp.48.3.353
  • Temme, A.A., Kerr, K.L., &Donovan, L.A. (2019). Vigour/tolerancetrade‐off in cultivated sunflower (Helianthus annuus) response to salinity stress is linked to leafele mental composition. Journal of Agronomy and Crop Science, 205 (5), 508-518. https://doi.org/10.1111/jac.12352
  • Yilmaz, E., Tuna, M., & Burun, B. (2011). Tolerance strategies of plants against salt stress effects. CBÜ Journal of Science, 7 (1), 47-66.
  • Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167 (3), 527-533. https://doi.org/10.1016/j.plantsci.2004.04.020
  • Woodbury, W., Spencer, A.K., &Stahmann, M.A. (1971). An improved procedure using ferricyanide for detecting catalase isozymes. Analytical Biochemistry, 44 (1), 301-305. https://doi.org/10.1016/0003-2697(71)90375-7

Tuz stresi koşullarında marulda (Lactuca sativa L.) silikon uygulamalarının fide büyüme stresi parametrelerine etkisi

Year 2025, Volume: 30 Issue: 1, 72 - 82, 26.04.2025
https://doi.org/10.37908/mkutbd.1496859

Abstract

Tuz stresi bitkilerin büyümesini ve gelişmesini osmotik ve iyon dengesini bozarak engellemektedir. Bu çalışmada; Marul fidelerinde tuz stresine karşı tolerans mekanizmalarını harekete geçirebilen silikon (Si) uygulaması sonucunda; Fide büyümesinde etkili olan antioksidan (SOD, CAT, APX, POD) ve fizyolojik parametrelerdeki (prolin, yaprak klorofil oranı, yaprak membran geçirgenliği ve bağıl su içeriği) değişimler araştırılmıştır. Kontrol bitkileri, yalnızca tuzla muamele edilen bitkilerden daha iyi büyüdü. Si+100 mM NaCl ve Si+50 mM NaCl uygulamaları sonucunda; SOD, CAT, APX, POD seviyelerinde %176 ile %339 arasında artışlar, yaprak klorofili ve nem içeriğinde %26,9 ile %28,1 arasında artışlar ve yaprak zarı hasarında %15,2 ile %76,4 arasında azalmalar belirlendi. Prolin birikimi ile antioksidan enzim aktiviteleri arasındaki ilişki Si uygulamasıyla etkili olmuş ve bitkilerin tuz stresine karşı savunmayı geliştirdiklerini göstermiştir. Sadece tuz uygulamaları sonucunda tuzun şiddetine göre bitki gelişimi azalmıştır. I50x100kg.ha-1Si etkileşiminin tüm parsellerde bitki büyümesinde daha etkili olduğu belirlendi.

Project Number

FYL-2022-11632

References

  • Abdelaal, K.A., Mazrou, Y.S., & Hafez, Y.M. (2020). Silicon foliar application mitigates salt stress in sweet peper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruityield. Plants, 9 (6), 733. https://doi.org/10.3390/plants9060733
  • Alp, Y., &Kabay, T. (2019). The effect of drought stress on antioxidative enzyme and nutrient exchange in some tomato genotypes. Turkish Journal of Agricultural and Natural Sciences, 6 (1), 71-77. https://doi.org/10.30910/turkjans.515352
  • Al-aghabary, K., Zhu, Z., & Shi, Q. (2005). Influence of siliconsupply on chlorophyllcontent, chlorophyll fluorescence, andantioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27 (12), 2101-2115. https://doi.org/10.1081/PLN-200034641
  • Anderson, D.L., Snyder, G.H., &Martin, F.G. (1991). Multi‐year response of sugarcane to calcium silicate slag on Everglades histosols. Agronomy Journal, 83 (5), 870-874. https://doi.org/10.2134/agronj1991.00021962008300050019x
  • Adejumobi, M.A., Alonge, T.A., &Ojo, O.I. (2016). A review of the techniques for monitoring soilsalinity in irrigated fields. AIMS, 2, 167-170.
  • Barr, H.D., & Weatherley, P.E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15 (3), 413-428. https://doi.org/10.1071/BI9620413
  • Bates, L.S., Waldren, R.P.A., &Teare, I.D. (1973). Rapiddetermination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamidegels. Analytical Biochemistry, 44 (1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
  • Bernardes, P.M., Mengarda, L.H.G., Lopes, J.C., Nogueira, M.U., &Rodrigues, L.L. (2015). Qualidadefisiológica de sementes de repolho de alta e baixa viabilidade sob estresse salino. Nucleus, 12 (1), 77-86. https://doi.org/10.37378/1982.2278.1105
  • Boling, L., Prabhakaran, S., & Abinaya, M. (2019). Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants, 8, 307. https://doi.org/10.3390/plants8090307
  • Bokhari, U.G., &Trent, J. D. (1985). Proline concentrations in water stressed grasses. Rangeland Ecology & Management/Journal of Range Management Archives, 38 (1), 37-38. https://doi.org/10.2307/3899329
  • Çaylak, E. (2011). Oxidative stress and antioxidants in animals and plants. Journal of Medical Research, 9 (1), 73-83. https://doi.org/10.3168/jds.S0022-0302(93)77620-1
  • Fernandez-Garcia, N., Cerda, A., & Carvajal, M. (2003). Grafting, a useful technique for improving salinity tolerance of tomato?. In International Symposium on Managing Greenhouse Crops in Saline Environment, (pp. 251-256). https://doi.org/10.17660/ActaHortic.2003.609.37
  • De Souza Lemos Neto, H., de Almeida Guimarães, M., Sampaio, I.M.G., de Araújo Hendges, A.R.A., de Oliveira, A.B., & Filho, S.M. (2018). Silicon (Si) reduces the effects of salt stress on germination and initial growth of lettuce (Lactuca sativa L.). Australian Journal of Crop Science, 12 (9), 1410-1418. https://doi.org/10.21475/ajcs.18.12.09.PNE1074
  • Ghorbanpour, M., Mohammadi, H., &Kariman, K. (2020). Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environmental Science: Nano, 7 (2), 443-461. https://doi.org/10.1039/C9EN00973F
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47(1), 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in potsunder drought. Plant Science, 169 (2), 313-321. https://doi.org/10.1016/j.plantsci.2005.02.023
  • Gottardi, S., Iacuzzo, F., Tomasi, N., Cortella, G., Manzocco, L., Pinton, R., Römheld, V., Mimmo, T., Scampicchio, M., Dalla Costa, L., & Cesco, S. (2012). Beneficial effects of silicon on hydroponically grown cornsalad (Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry, 56, 14-23. https://doi.org/10.1016/j.plaphy.2012.04.002
  • Irshad, M., Yamamoto, S., Eneji, A.E., Endo, T., & Honna, T. (2002). Ureaand manure effect on growt hand mineral contents of maize under saline conditions. Journal of Plant Nutrition, 25 (1), 189-200. https://doi.org/10.1081/PLN-100108790
  • Kacar, B. (1972). Chemical analysis of soil and plant. Ankara University. Faculty of Agriculture Publication No: 53, A.U. Press, Ankara.
  • Kabay, T. (2019). Effects of different potassium doses on development of high temperature-sensitive bean plants. Fresenius Environmental Bulletin, 28 (1), 320-325. https://doi.org/10.24326/asphc.2020.4.6
  • Kalefetoğlu, T., & Ekmekci, Y. (2005). The effects of drought on plant sand tolerance mechanisms. Gazi University Journal of Science, 18 (4), 723-740.
  • Kuşvuran, S., & Abak, K. (2012). Response of melon genotypes to drought stress. Çukurova University Journal of Science and Engineering, 28 (5).
  • Larcher, W. (1995). Physiological plant ecology. Published by Springer, ISBN 0–387–09795–3, New York, 506 p.
  • Lima, M.D.A., Castro, V.F.D., Vidal, J.B., &Enéas-Filho, J. (2011). Aplicação de silício em milho e feijão-de-corda sob estresse salino. Revista Ciência Agronômica, 42, 398-403. https://doi.org/10.1590/S1806-66902011000200019
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680-685. https://doi.org/10.1038/227680a0
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78 (3), 389-398. https://doi.org/10.1006/anbo.1996.0134
  • Manivannan, A., Soundararajan, P., Muneer, S., Ko, C.H., & Jeong, B.R. (2016). Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International, 2016. https://doi.org/10.1155/2016/3076357
  • Muneer, S., Park, Y.G., Manivannan, A., Soundararajan, P., & Jeong, B.R. (2014). Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. International Journal of Molecular Sciences, 15 (12), 21803-21824. https://doi.org/10.3390/ijms151221803
  • Munns, R. (2002). Comparative physiology of salt and waterstress. Plant, Cell & Environment, 25 (2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22 (5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • Orcutt, D.M., & Nilsen, E.T. (1996). The physiology of plants under stress. Soil and Biotic Factors, pp:177-237, John Wiley&Sons, inc. NY. https://doi.org/10.3389/fpls.2014.00086
  • Osakabe, Y., Osakabe, K., Shinozaki, K., &Tran, L.S.P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 76566. https://doi.org/10.3389/fpls.2014.00086
  • Öztekin, G.B., Tüzel, Y., & Tüzel, İ.H. (2017). Serada topraksız domates yetiştiriciliğinde silisyumun tuz stresine etkisi. Akademik Ziraat Dergisi, 6, 243-256.
  • Oztekin, G.B., Tuzel, Y., Tuzel, I.H., & Tepecik, M. (2018). Effects of silicon on tomato grown in substrate culture under salinity stress. Fresenius Environmental Bulletin, 27 (8), 5520-5530.
  • Rodrigues, F.D.A., Oliveira, L.D., Korndörfer, A.P., & Korndörfer, G.H. (2011). Silício: um elemento benéfico e importante para as plantas. Informações Agronomicas, 134 (1), 14-20.
  • Romero-Aranda, R., Yeo, A.R., Flowers, T.J., & Cuartero, J. (2000). Variability for some physiological characters affecting salt tolerance in tomato. In International Symposium on Techniquesto Control Salination for Horticultural Productivity, (pp. 435-441). https://doi.org/10.17660/ActaHortic.2002.573.52
  • Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S.A., Zia-Ur-Rehman, M., Qayyum, M.F. & Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environmental Science and Pollution Research, 22, 15416-15431. https://doi.org/10.1007/s11356-015-5305-x
  • Shannon, M.C., & Grieve, C.M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78 (1-4), 5-38. https://doi.org/10.1016/S0304-4238(98)00189-7
  • Suyum, K., Dasgan, H.Y., Sari, N., Kusvuran, S., Aydoner, G., Akyol, M., Akhoundnejad, Y., Solmaz, I., & Bol, A. (2012). Genotypic variation in the response of water melon genotypes to alinity and drought stresses. https://cabidigitallibrary.org/terms-and-conditions
  • Secco, L.B., Queiroz, S.O., Dantas, B.F., de Souza, Y.A., & da Silva, P.P. (2010). Qualidade de sementes de acessos de melão, Cucumis melo L., em condições de estresse salino. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 5 (2), 5. http://revista.gvaa.com.br
  • Seevers, P.M., Daly, J.M., & Catedral, F.F. (1971). The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiology, 48 (3), 353-360. https://doi.org/10.1104/pp.48.3.353
  • Temme, A.A., Kerr, K.L., &Donovan, L.A. (2019). Vigour/tolerancetrade‐off in cultivated sunflower (Helianthus annuus) response to salinity stress is linked to leafele mental composition. Journal of Agronomy and Crop Science, 205 (5), 508-518. https://doi.org/10.1111/jac.12352
  • Yilmaz, E., Tuna, M., & Burun, B. (2011). Tolerance strategies of plants against salt stress effects. CBÜ Journal of Science, 7 (1), 47-66.
  • Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167 (3), 527-533. https://doi.org/10.1016/j.plantsci.2004.04.020
  • Woodbury, W., Spencer, A.K., &Stahmann, M.A. (1971). An improved procedure using ferricyanide for detecting catalase isozymes. Analytical Biochemistry, 44 (1), 301-305. https://doi.org/10.1016/0003-2697(71)90375-7
There are 46 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section Araştırma Makalesi
Authors

Yusuf Çelik 0000-0002-8590-6690

Project Number FYL-2022-11632
Early Pub Date April 15, 2025
Publication Date April 26, 2025
Submission Date June 6, 2024
Acceptance Date November 16, 2024
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Çelik, Y. (2025). The effect of silicon applications on seedling growth stress parameters in lettuce (Lactuca sativa L.) under salt stress conditions. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 30(1), 72-82. https://doi.org/10.37908/mkutbd.1496859