Research Article
BibTex RIS Cite

The efficacy of two different formulations and concentrations of Abamectin on the Root-knot nematode in tomato and cucumber

Year 2025, Volume: 30 Issue: 2, 441 - 450, 21.08.2025
https://doi.org/10.37908/mkutbd.1590603

Abstract

The aim of the study was to investigate the effects of different Abamectin formulations and concentrations (Abamectin 18 g L-1 EW, Abamectin 20 g L-1 SC and Abamectin 50 g L-1 SC) licensed in Türkiye on the suppression of Meloidogyne incognita infection on tomato and cucumber under climate chamber conditions. Tomato and cucumber seedlings were transplanted after soil application of 0.1 mL, 0.2 mL and 0.08 mL/30 mL concentrations of Abamectin 18 EW, Abamectin 20 SC and Abamectin 50 SC, respectively and inoculated. Sixty days later, the study was evaluated. The nematicidal activity of Abamectin varied depending on the formulation and concentration. Abamectin 50 SC, Abamectin 18 EW and Abamectin 20 SC applications suppressed gall formation by 100%, 78% and 16% in tomato and 100%, 75% and 19% in cucumber, respectively. EW formulation showed lower suppressive effect than SC formulation but higher suppressive effect than 20 SC formulation. Although both were SC formulations, significant differences were found in their nematicidal effects (p≤0.05). The highest suppressive effect in tomato and cucumber was observed in Abamectin 50 g L-1 SC application and it was determined that it had a positive effect on plant and root wet weight in tomato. It is important to conduct more detailed studies on formulation types and concentrations for Abamectin, an active ingredient used as an alternative against root-knot nematodes.

Project Number

X

References

  • Abawi, G.S., Ludwig, J.W., Morton, H.V, & Hofer, D. (2003). Efficacy of abamectin as seed treatment against Meloidogyne hapla and Pratylenchus penetrans. Journal of Nematology, 35, 321-322.
  • Baale, B., Shettima, L., & Modu, K.A. (2021). Effects of some botanicals on root knot nematode population and yield of tomato (Solanum lycopersicum L.) in Maiduguri, Nigeria. International Journal of Agricultural Science and Technology, 9, 58-67.
  • Becker, J.O., Ploeg, A., & Nunez, J. (2012). Evaluation of novel products for root-knot nematode management in tomato, 2011. Plant Disease Management Reports, 6, N016.
  • Becker, O.J., Morton, H.V., & Hofer, D. (2003). Utilization of abamectin seed coating in vegetable transplant production systems. Journal of Nematology, 35, 324.
  • Beggel, S., Werner, I., Connon, R.E, & Geist, J.P. (2020). Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Science of The Total Environment, 408, 3169-3175. https://doi.org/10.1016/j.scitotenv.2010.04.004
  • Bridge, J., & Page, S.L.J. (1980). Estimation of root-knot nematode infestation levels on roots using a rating chart. International Journal of Pest Management, 26 (3), 296-298. https://doi.org/10.1080/09670878009414416
  • Burkhart, C.N., & Burkhart, C.G. (2000). Oral ivermectin therapy for phthiriasis palpebrum. Archives of Ophthalmology, 118 (1), 134-135.
  • Buzzetti, K. (2018). Role of the formulation in the efficacy and dissipation of agricultural ınsecticides. Insecticides: Agriculture and Toxicology, 43-64.
  • Cabrera, J.A., Kiewnick, S., Grimm, C., Dababat, A.E.-F.A & Sikora, R.A. (2009). Effective concentration and range of activity of abamectin as seed treatment against root-knot nematodes in tomato under glasshouse conditions. Nematology, 11, 909-915. http://dx.doi.org/10.1163/156854109x433371
  • Cheng, X., Liu, X., Wang, H., Ji, X., Wang, K., Wei, M., & Qiao, K. (2015). Effect of emamectin benzoate on root-knot nematodes and tomato yield. PLoS One, 10 (10), e0141235. https://doi.org/10.1371/journal.pone.0141235
  • Chukwudebe, A.C., Feely, W.F., Burnett, T.J., Crouch, L.S., & Wislocki, P.G. (1996). Uptake of emamectin benzoate residues from soil by rotational crops. Journal of Agricultural and Food Chemistry, 44 (12), 4015-4021. https://doi.org/10.1021/jf960517n
  • Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van der Ploeg, L.H., Schaeffer, J.M., & Arena, J.P. (1994). Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature, 371 (6499), 707-711.
  • d'Errico, G.I.A.D.A., Marra, R., Vinale, F., Landi, S., Roversi, P.F., & Woo, S.L. (2017). Nematicidal efficacy of new abamectin-based products used alone and in combination with indolebutyric acid against the root-knot nematode Meloidogyne incognita. Redia: Giornale di Zoologia, 100. http://dx.doi.org/10.19263/REDIA-100.17.12
  • Dionisio, A.C., & Rath, S. (2016). Abamectin in soils: analytical methods, kinetics, sorption and dissipation. Chemosphere, 151, 17-29. https://doi.org/10.1016/j.chemosphere.2016.02.058
  • El-Marzoky, A.M., Abdel-Hafez, S.H., Sayed, S., Salem, H.M., El-Tahan, A.M., & El-Saadony, M.T. (2022). The effect of abamectin seeds treatment on plant growth and the infection of root-knot nematode Meloidogyne incognita (Kofoid and White) chitwood. Saudi Journal of Biological Sciences, 29 (2), 970-974. https://doi.org/10.1016/j.sjbs.2021.10.006
  • Faghihi, J., Vierling, R.A., Santini, J.B., & Ferris, V.R. (2007). Effects of selected fungicides on development of soybean cyst nematode. Nematropica, 259-266.
  • Fu, Y.B., He, H.W., Liu, R., Zhu, L., Xia, Y.N., & Qiu, J. (2019). Preparation and performance of a BTDA-modified polyurea microcapsule for encapsulating avermectin. Colloids Surf B Biointerfaces, 183 (1), 110400. https://doi.org/10.1016/j.colsurfb.2019.110400
  • Gowda, M.T., Sellaperumal, C., Reddy, B.R., Rai, A.B., & Singh, B. (2018). Management of root-knot nematode Meloidogyne incognita in tomato with liquid bioformulations. Vegetable Science, 45 (2), 262-268.
  • Göze Özdemir, F.G., Tosun, B., Sanli, A., & Karadogan, T. (2022). Nematoxic activity of some Apiaceae essential oils against Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae). Journal of Agriculture Faculty of Ege University, 59 (3), 529-539. https://doi.org/10.20289/zfdergi.1092623
  • Hazra, D.K., Karmakar, R., Poi, R., Bhattacharya, S., & Mondal, S. (2017). Recent advances in pesticide formulations for eco-friendly and sustainable vegetable pest management: A review. Archives of Agriculture and Environmental Science, 2 (3), 232-237.
  • Ismail, A.R., Ooi, T.L., & Salmiah, A. (2004). Environment friendly palm based Inert ingredient for Ew-insecticide formulations, 236, 1-4.
  • Jansson, R., & Rabatin, S. (1998). Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes. Journal of Nematology, 30, 65-75.
  • Jiang, J., Liu, X., Liu, D., Zhou, Z., Pan, C., & Wang, P. (2024). The combination of chemical fertilizer affected the control efficacy against root-knot nematode and environmental behavior of abamectin in soil. Pesticide Biochemistry and Physiology, 199, 105804. https://doi.org/10.1016/j.pestbp.2024.105804
  • Khalil, M.S. (2013). Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. Journal of Plant Pathology and Microbiology, 4 (4), 1-7. http://dx.doi.org/10.4172/2157-7471.1000174
  • Khalil, M.S., & Abd El-Naby, S.S. (2018). The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid and White) Chitwood on tomatoes. Journal of Biopesticides, 11 (2), 146-153.
  • Khalil, M.S., El-Aziz, A., & El-khouly, A. (2022). Optimization the impact of Fluopyram and Abamectin against the root-knot nematode (Meloidogyne incognita) on tomato plants by using Trichoderma album. Egyptian Journal of Agronematology, 21 (2), 79-90. https://doi.org/10.21608/EJAJ.2022.257672
  • Khan, A., Khan, A., Ali, A., Fatima, S., & Siddiqui, M.A. (2023). Root-knot nematodes (Meloidogyne spp.): Biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen, 75 (6), 2187-2205. https://doi.org/10.1007/s10343-023-00886-5
  • Lee, J.W., Mwamula, A.O., Choi, J.H., Lee, H.W., Kim, Y.S., Kim, J.H., & Lee, D.W. (2023). The potency of abamectin formulations against the pine wood nematode, Bursaphelenchus xylophilus. The Plant Pathology Journal, 39 (3), 290-302. https://doi.org/10.5423/PPJ.OA.02.2023.0023
  • Massoud, M.A., Saad, A.F.S., Khalil, M.S., Zakaria, M., & Selim, S. (2023). Comparative biological activity of abamectin formulations on root-knot nematodes (Meloidogyne spp.) infecting cucumber plants: in vivo and in vitro. Scientific Reports, 13 (1), 12418. https://doi.org/10.1038/s41598-023-39324-x
  • Mesnage, R., & Antoniou, M.N. (2018). Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Frontiers Public Health, 5, 361. https://doi.org/10.3389/fpubh.2017.00361
  • Mesnage, R., Bernay B., & Séralini, G.-E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313, 122-128. https://doi.org/10.1016/j.tox.2012.09.006
  • Moens, M., & Perry, R.N. (2009). Migratory plant endoparasitic nematodes: A group rich in contrasts and divergence. Annual Review of Phytopathology, 47 (1), 313-332. https://doi.org/10.1146/annurev-phyto-080508-081846
  • Qiao, K., Liu, X., Wang, H., Xia, X., Ji, X., & Wang, K. (2012). Effect of abamectin on root‐knot nematodes and tomato yield. Pest Management Science, 68 (6), 853-857. https://doi.org/10.1002/ps.2338
  • Radwan, M.A., Saad, A.S.A., Mesbah, H.A., Ibrahim, H.S., & Khalil, M.S. (2019). Investigating the and nematicidal performance of structurally related macrolides against the root-knot nematode. Hellenic Plant Protection Journal, 12 (1), 24-37. https://doi.org/10.2478/hppj-2019-0005
  • Saad, A.F.S., Massoud, M.A., Ibrahim, H.S., & Khalil, M.S. (2012). Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Archives of Phytopathology and Plant Protection, 45 (8), 955-962. https://doi.org/10.1080/03235408.2012.655145
  • Sasanelli, N., Konrat, A., Migunova, V., Toderas, I., Iurcu-Straistaru, E., Rusu, S., Bivol, A., Andoni, C., & Veronico, P. Review on control methods against plant parasitic nematodes applied in Southern Member States (C Zone) of the European Union. Agriculture, 11 (7), 602. https://doi.org/10.3390/agriculture11070602
  • Sasser, J.N., Kirkpatrick, T.L., & Dybas, R.A. (1982). Efficacy of avermectins for root-knot control in tobacco. Plant Disease, 66, 691-693.

Domates ve hıyarda Kök-ur nematoduna karşı iki farklı Abamectin formülasyonu ve konsantrasyonunun etkinliği

Year 2025, Volume: 30 Issue: 2, 441 - 450, 21.08.2025
https://doi.org/10.37908/mkutbd.1590603

Abstract

Çalışmanın amacı, Türkiye’de ruhsatlı farklı Abamectin formülasyonlarının ve konsantrasyonlarının (Abamectin 18 g L-1 EW, Abamectin 20 g L-1 SC and Abamectin 50 g L-1 SC) iklim odası koşullarında domates ve hıyarda Meloidogyne incognita enfeksiyonunun baskılanması üzerine etkilerini araştırmaktır. Abamectin 18 EW, Abamectin 20 SC ve Abamectin 50 SC'nin sırasıyla 0.1 mL, 0.2 mL ve 0.08 mL/30 mL konsantrasyonları toprağa uygulandıktan sonra domates ve hıyar fideleri şaşırtılmıştır ve nematod inokulasyonu yapılmıştır. Abamectin'in nematisidal etkinliği, formülasyona ve konsantrasyona bağlı olarak değişmiştir. Abamectin 50 SC, Abamectin 18 EW ve Abamectin 20 SC uygulamaları domateste sırasıyla %100, %78 ve %16, hıyarda ise sırasıyla %100, %78 ve %19 oranlarında gallenmeyi baskılamıştır. EW formülasyonu, 50 SC formülasyonundan daha düşük ancak 20 SC formülasyonundan daha yüksek baskılayıcı etki göstermiştir. Her ikisi de SC formülasyonları olmasına rağmen nematisidal etkilerinde önemli farklılıklar bulunmuştur (p≤0,05). Domates ve hıyarda en yüksek baskılayıcı etki Abamectin 50 g L-1 SC uygulamasında olmuş ve domateste bitki ve kök yaş ağırlığında olumlu etki yarattığı belirlenmiştir. Kök ur nematodlarına alternatif olarak kullanılan etkin madde Abamectin için formülasyon tipleri ve konsantrasyonları hakkında daha detaylı çalışmaların yapılması önem taşımaktadır.

Project Number

X

References

  • Abawi, G.S., Ludwig, J.W., Morton, H.V, & Hofer, D. (2003). Efficacy of abamectin as seed treatment against Meloidogyne hapla and Pratylenchus penetrans. Journal of Nematology, 35, 321-322.
  • Baale, B., Shettima, L., & Modu, K.A. (2021). Effects of some botanicals on root knot nematode population and yield of tomato (Solanum lycopersicum L.) in Maiduguri, Nigeria. International Journal of Agricultural Science and Technology, 9, 58-67.
  • Becker, J.O., Ploeg, A., & Nunez, J. (2012). Evaluation of novel products for root-knot nematode management in tomato, 2011. Plant Disease Management Reports, 6, N016.
  • Becker, O.J., Morton, H.V., & Hofer, D. (2003). Utilization of abamectin seed coating in vegetable transplant production systems. Journal of Nematology, 35, 324.
  • Beggel, S., Werner, I., Connon, R.E, & Geist, J.P. (2020). Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Science of The Total Environment, 408, 3169-3175. https://doi.org/10.1016/j.scitotenv.2010.04.004
  • Bridge, J., & Page, S.L.J. (1980). Estimation of root-knot nematode infestation levels on roots using a rating chart. International Journal of Pest Management, 26 (3), 296-298. https://doi.org/10.1080/09670878009414416
  • Burkhart, C.N., & Burkhart, C.G. (2000). Oral ivermectin therapy for phthiriasis palpebrum. Archives of Ophthalmology, 118 (1), 134-135.
  • Buzzetti, K. (2018). Role of the formulation in the efficacy and dissipation of agricultural ınsecticides. Insecticides: Agriculture and Toxicology, 43-64.
  • Cabrera, J.A., Kiewnick, S., Grimm, C., Dababat, A.E.-F.A & Sikora, R.A. (2009). Effective concentration and range of activity of abamectin as seed treatment against root-knot nematodes in tomato under glasshouse conditions. Nematology, 11, 909-915. http://dx.doi.org/10.1163/156854109x433371
  • Cheng, X., Liu, X., Wang, H., Ji, X., Wang, K., Wei, M., & Qiao, K. (2015). Effect of emamectin benzoate on root-knot nematodes and tomato yield. PLoS One, 10 (10), e0141235. https://doi.org/10.1371/journal.pone.0141235
  • Chukwudebe, A.C., Feely, W.F., Burnett, T.J., Crouch, L.S., & Wislocki, P.G. (1996). Uptake of emamectin benzoate residues from soil by rotational crops. Journal of Agricultural and Food Chemistry, 44 (12), 4015-4021. https://doi.org/10.1021/jf960517n
  • Cully, D.F., Vassilatis, D.K., Liu, K.K., Paress, P.S., Van der Ploeg, L.H., Schaeffer, J.M., & Arena, J.P. (1994). Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature, 371 (6499), 707-711.
  • d'Errico, G.I.A.D.A., Marra, R., Vinale, F., Landi, S., Roversi, P.F., & Woo, S.L. (2017). Nematicidal efficacy of new abamectin-based products used alone and in combination with indolebutyric acid against the root-knot nematode Meloidogyne incognita. Redia: Giornale di Zoologia, 100. http://dx.doi.org/10.19263/REDIA-100.17.12
  • Dionisio, A.C., & Rath, S. (2016). Abamectin in soils: analytical methods, kinetics, sorption and dissipation. Chemosphere, 151, 17-29. https://doi.org/10.1016/j.chemosphere.2016.02.058
  • El-Marzoky, A.M., Abdel-Hafez, S.H., Sayed, S., Salem, H.M., El-Tahan, A.M., & El-Saadony, M.T. (2022). The effect of abamectin seeds treatment on plant growth and the infection of root-knot nematode Meloidogyne incognita (Kofoid and White) chitwood. Saudi Journal of Biological Sciences, 29 (2), 970-974. https://doi.org/10.1016/j.sjbs.2021.10.006
  • Faghihi, J., Vierling, R.A., Santini, J.B., & Ferris, V.R. (2007). Effects of selected fungicides on development of soybean cyst nematode. Nematropica, 259-266.
  • Fu, Y.B., He, H.W., Liu, R., Zhu, L., Xia, Y.N., & Qiu, J. (2019). Preparation and performance of a BTDA-modified polyurea microcapsule for encapsulating avermectin. Colloids Surf B Biointerfaces, 183 (1), 110400. https://doi.org/10.1016/j.colsurfb.2019.110400
  • Gowda, M.T., Sellaperumal, C., Reddy, B.R., Rai, A.B., & Singh, B. (2018). Management of root-knot nematode Meloidogyne incognita in tomato with liquid bioformulations. Vegetable Science, 45 (2), 262-268.
  • Göze Özdemir, F.G., Tosun, B., Sanli, A., & Karadogan, T. (2022). Nematoxic activity of some Apiaceae essential oils against Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae). Journal of Agriculture Faculty of Ege University, 59 (3), 529-539. https://doi.org/10.20289/zfdergi.1092623
  • Hazra, D.K., Karmakar, R., Poi, R., Bhattacharya, S., & Mondal, S. (2017). Recent advances in pesticide formulations for eco-friendly and sustainable vegetable pest management: A review. Archives of Agriculture and Environmental Science, 2 (3), 232-237.
  • Ismail, A.R., Ooi, T.L., & Salmiah, A. (2004). Environment friendly palm based Inert ingredient for Ew-insecticide formulations, 236, 1-4.
  • Jansson, R., & Rabatin, S. (1998). Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes. Journal of Nematology, 30, 65-75.
  • Jiang, J., Liu, X., Liu, D., Zhou, Z., Pan, C., & Wang, P. (2024). The combination of chemical fertilizer affected the control efficacy against root-knot nematode and environmental behavior of abamectin in soil. Pesticide Biochemistry and Physiology, 199, 105804. https://doi.org/10.1016/j.pestbp.2024.105804
  • Khalil, M.S. (2013). Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. Journal of Plant Pathology and Microbiology, 4 (4), 1-7. http://dx.doi.org/10.4172/2157-7471.1000174
  • Khalil, M.S., & Abd El-Naby, S.S. (2018). The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid and White) Chitwood on tomatoes. Journal of Biopesticides, 11 (2), 146-153.
  • Khalil, M.S., El-Aziz, A., & El-khouly, A. (2022). Optimization the impact of Fluopyram and Abamectin against the root-knot nematode (Meloidogyne incognita) on tomato plants by using Trichoderma album. Egyptian Journal of Agronematology, 21 (2), 79-90. https://doi.org/10.21608/EJAJ.2022.257672
  • Khan, A., Khan, A., Ali, A., Fatima, S., & Siddiqui, M.A. (2023). Root-knot nematodes (Meloidogyne spp.): Biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen, 75 (6), 2187-2205. https://doi.org/10.1007/s10343-023-00886-5
  • Lee, J.W., Mwamula, A.O., Choi, J.H., Lee, H.W., Kim, Y.S., Kim, J.H., & Lee, D.W. (2023). The potency of abamectin formulations against the pine wood nematode, Bursaphelenchus xylophilus. The Plant Pathology Journal, 39 (3), 290-302. https://doi.org/10.5423/PPJ.OA.02.2023.0023
  • Massoud, M.A., Saad, A.F.S., Khalil, M.S., Zakaria, M., & Selim, S. (2023). Comparative biological activity of abamectin formulations on root-knot nematodes (Meloidogyne spp.) infecting cucumber plants: in vivo and in vitro. Scientific Reports, 13 (1), 12418. https://doi.org/10.1038/s41598-023-39324-x
  • Mesnage, R., & Antoniou, M.N. (2018). Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Frontiers Public Health, 5, 361. https://doi.org/10.3389/fpubh.2017.00361
  • Mesnage, R., Bernay B., & Séralini, G.-E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313, 122-128. https://doi.org/10.1016/j.tox.2012.09.006
  • Moens, M., & Perry, R.N. (2009). Migratory plant endoparasitic nematodes: A group rich in contrasts and divergence. Annual Review of Phytopathology, 47 (1), 313-332. https://doi.org/10.1146/annurev-phyto-080508-081846
  • Qiao, K., Liu, X., Wang, H., Xia, X., Ji, X., & Wang, K. (2012). Effect of abamectin on root‐knot nematodes and tomato yield. Pest Management Science, 68 (6), 853-857. https://doi.org/10.1002/ps.2338
  • Radwan, M.A., Saad, A.S.A., Mesbah, H.A., Ibrahim, H.S., & Khalil, M.S. (2019). Investigating the and nematicidal performance of structurally related macrolides against the root-knot nematode. Hellenic Plant Protection Journal, 12 (1), 24-37. https://doi.org/10.2478/hppj-2019-0005
  • Saad, A.F.S., Massoud, M.A., Ibrahim, H.S., & Khalil, M.S. (2012). Activity of nemathorin, natural product and bioproducts against root-knot nematodes on tomatoes. Archives of Phytopathology and Plant Protection, 45 (8), 955-962. https://doi.org/10.1080/03235408.2012.655145
  • Sasanelli, N., Konrat, A., Migunova, V., Toderas, I., Iurcu-Straistaru, E., Rusu, S., Bivol, A., Andoni, C., & Veronico, P. Review on control methods against plant parasitic nematodes applied in Southern Member States (C Zone) of the European Union. Agriculture, 11 (7), 602. https://doi.org/10.3390/agriculture11070602
  • Sasser, J.N., Kirkpatrick, T.L., & Dybas, R.A. (1982). Efficacy of avermectins for root-knot control in tobacco. Plant Disease, 66, 691-693.
There are 37 citations in total.

Details

Primary Language English
Subjects Plant Protection (Other)
Journal Section Araştırma Makalesi
Authors

Fatma Gül Göze Özdemir 0000-0003-1969-4041

Harun Çimenkaya 0009-0001-3211-2045

Sami Dura 0000-0003-0924-7299

Project Number X
Early Pub Date August 9, 2025
Publication Date August 21, 2025
Submission Date November 24, 2024
Acceptance Date April 11, 2025
Published in Issue Year 2025 Volume: 30 Issue: 2

Cite

APA Göze Özdemir, F. G., Çimenkaya, H., & Dura, S. (2025). The efficacy of two different formulations and concentrations of Abamectin on the Root-knot nematode in tomato and cucumber. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 30(2), 441-450. https://doi.org/10.37908/mkutbd.1590603