Research Article
BibTex RIS Cite

Effects of Dietary-Like Amount of Arginine Supplementation on Fractional Exhaled Nitric Oxide (FeNO) Levels in Obese and Normal-Weight Individuals

Year 2024, , 79 - 87, 30.06.2024
https://doi.org/10.55517/mrr.1385986

Abstract

Aim: In previous studies, the arginine-nitric oxide pathway has been associated with pathways specific to some chronic diseases such as obesity. The purpose of this study was to examine the effects of dietary-like amounts of arginine supplementation on fractional exhaled nitric oxide (FeNO) levels in obese and normal-weighted individuals. Methods: This study was conducted with 40 participants (20 obese and 20 control). The participants consumed 4500 mg arginine supplement and low protein (41 mg arginine/25 g powder product) soup after one-night hunger. Resting metabolic rate (RMR) and 1st, 2nd, and 5th hour fractional exhaled nitric oxide (FeNO) levels were measured and 3-day food consumptions were recorded. Results: There was no significant difference between the mean baseline and 1st -hour FeNO level of the participants in the obese group and the mean baseline FeNO level of the participants in the control group. The mean 2nd and 5th hour FeNO level of the participants in the control group were significantly higher than the mean 2nd and 5th hour FeNO levels of the participants in the obese group (p<0.05). Conclusion: The fact that normal-weighted participants had higher FeNO levels than obese participants probably support previous studies that pointed to the relationship between airway inflammation and obesity.

Ethical Statement

The authors declared no conflict of interest.

Supporting Institution

This study was provided by Erciyes University Scientific Research Coordination Office.

Thanks

The authors express their gratitude to the participants.

References

  • Chen Q. Wang Y. Zhang Z. Liu X. Li C. Ma F. Arginine increases tolerance to nitrogen deficiency in Malus hupehensis via alterations in photosynthetic capacity and amino acids metabolism. Frontiers in Plant Science. 2022 Jan 14;12:772086. doi: 10.3389/fpls.2021.772086.
  • Wu G. Bazer FW. Davis TA. Kim SW. Li P. Marc Rhoads J. et al. Arginine metabolism and nutrition in growth. health. and disease. Amino Acids. 2009 May;37(1):153-68. doi: 10.1007/s00726-008-0210-y.
  • Szlas A. Kurek JM. Krejpcio Z. The potential of l-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism—a review. Nutrients. 2022 Feb 24;14(5):961. doi: 10.3390/nu14050961.
  • Mirmiran P. Bahadoran Z. Ghasemi A. Azizi F. The association of dietary L-arginine intake and serum nitric oxide metabolites in adults: A population-based study. Nutrients. 2016;8(5):311. doi: 10.3390/nu8050311.
  • Molani Gol R. Rafraf M. Association between abdominal obesity and pulmonary function in apparently healthy adults: A systematic review. Obesity Research and Clinical Practice. 2021 Sep-Oct;15(5):415-424. doi: 10.1016/j.orcp.2021.06.011.
  • Cortes-Telles A. Ortiz-Farias DL. Pou-Aguilar YN. Almeida-de-la-Cruz L. Perez-Padilla JR. Clinical impact of obesity on respiratory diseases: A real-life study. Lung India. 2021 Jul-Aug;38(4):321-325. doi: 10.4103/lungindia.lungindia_701_20.
  • Dixon AE. Peters U. The effect of obesity on lung function. Expert Review of Respiratory Medicine. 2018 Sep;12(9):755-767. doi: 10.1080/17476348.2018.1506331.
  • Liu C. Li P. Zheng J. Wang Y. Wu W. Liu X. Role of necroptosis in airflow limitation in chronic obstructive pulmonary disease: Focus on small-airway disease and emphysema. Cell Death Discovery. 2022;8:363. doi: 10.1038/s41420-022-01154-7.
  • Gläser S. Ittermann T. Koch B. Völzke H. Wallaschofski H. Nauck M. et al. Airflow limitation. lung volumes and systemic inflammation in a general population. European Respiratory Journal. 2012;39(1):29-37. doi: 10.1183/09031936.00009811.
  • Al Khathlan N. Salem AM. The effect of adiposity markers on fractional exhaled nitric oxide (FeNO) and pulmonary function measurements. International Journal of General Medicine. 2020 Oct 29;13:955-962. doi: 10.2147/IJGM.S280395.
  • Van de Kant KD. Paredi P. Meah S. Kalsi HS. Barnes PJ. Usmani OS. The effect of body weight on distal airway function and airway inflammation. Obesity Research and Clinical Practice. 2016;10(5):564-573. doi: 10.1016/j.orcp.2015.10.005.
  • Ekström S. Hallberg J. Kull I. Protudjer JLP. Thunqvist P. Bottai M. et al. Body mass index status and peripheral airway obstruction in school-age children: A population-based cohort study. Thorax. 2018;73(6):538-545. doi: 10.1136/thoraxjnl-2017-210716.
  • Komakula S. Khatri S. Mermis J. Savill S. Haque S. Rojas M. et al. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respiratory Research. 2007;8:32. doi: 10.1186/1465-9921-8-32.
  • Maniscalco M. Zedda A. Faraone S. Cristiano S. Sofia M. Motta A. Low alveolar and bronchial nitric oxide in severe uncomplicated obesity. Obesity Research and Clinical Practice. 2015;9(6):603-608. doi: 10.1016/j.orcp.2015.03.004.
  • Erkoçoğlu M. Kaya A. Ozcan C. Akan A. Vezir E. Azkur D. et al. The effect of obesity on the level of fractional exhaled nitric oxide in children with asthma. International Archives of Allergy and Immunology. 2013;162(2):156-162. doi: 10.1159/000351454.
  • Uppalapati A. Gogineni S. Espiritu JR. Association between body mass index (BMI) and fraction of exhaled nitric oxide (FeNO) levels in the National Health and Nutrition Examination Survey (NHANES) 2007–2010. Obesity Research and Clinical Practice. 2016;10(6):652-658. doi: 10.1016/j.orcp.2015.11.006.
  • National Institute of Health (2022). Nutrient Recommendations and Databases. [Internet]. National Institutes of Health. USA. [cited 2023 Nov 16]. Available from: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx#dri.
  • American Thoracic Society. European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. 2005. American Journal of Respiratory and Critical Care Medicine. 2005;171(8):912-930. doi: 10.1164/rccm.200406-710ST.
  • Gemicioglu B. Musellim B. Dogan I. Guven K. Fractional exhaled nitric oxide (FeNO) in different asthma phenotypes. Allergy and Rhinology (Providence). 2014;5(3):157-161. doi: 10.2500/ar.2014.5.0099.
  • Olin AC. Aldenbratt A. Ekman A. Ljungkvist G. Jungersten L. Alving K. et al. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respiratory Medicine. 2001 Feb;95(2):153-8. doi: 10.1053/rmed.2000.1010. PMID: 11217912.
  • Kroll JL. Werchan CA. Rosenfield D. Ritz T. Acute ingestion of beetroot juice increases exhaled nitric oxide in healthy individuals. PLoS One. 2018 Jan 25;13(1):e0191030. doi: 10.1371/journal.pone.0191030.
  • Stark H. Purokivi M. Kiviranta J. Randell J. Tukiainen H. Short-term and seasonal variations of exhaled and nasal NO in healthy subjects. Respiratory Medicine. 2007;101(2):265-271. doi: 10.1016/j.rmed.2006.05.009.
  • Thijs W. de Mutsert R. Cessie S. Hiemstra PS. Rosendaal FR. Middeldorp S. et al. Reproducibility of exhaled nitric oxide measurements in overweight and obese adults. BMC Research Notes. 2014;7(1):775. doi: 10.1186/1756-0500-7-775.
  • Holguin F. Comhair SA. Hazen SL. Powers RW. Khatri SS. Bleecker ER. et al. An association between L-arginine/asymmetric dimethyl arginine balance. obesity. and the age of asthma onset phenotype. American Journal of Respiratory and Critical Care Medicine. 2013;187(2):153-159. doi: 10.1164/rccm.201207-1270OC.
  • Ogata H. Yatabe M. Misaka S. Shikama Y. Sato S. Munakata M. et al. Effect of oral L-arginine administration on exhaled nitric oxide (NO) concentration in healthy volunteers. Fukushima Journal of Medical Science. 2013;59(1):43-48. doi: 10.5387/fms.59.43.

Obez ve Normal Ağırlıktaki Bireylerde Diyete Benzer Miktarda Arjinin Takviyesinin Fraksiyonel Ekshale Nitrik Oksit (FeNO) Düzeyleri Üzerindeki Etkileri

Year 2024, , 79 - 87, 30.06.2024
https://doi.org/10.55517/mrr.1385986

Abstract

Amaç: Daha önce yapılan çalışmalarda arjinin-nitrik oksit yolağı obezite gibi bazı kronik hastalıklara özgü yolaklar ile ilişkilendirilmiştir. Bu çalışmanın amacı, obez ve normal ağırlıktaki bireylerde diyete benzer miktarda arjinin takviyesinin fraksiyonel ekshale nitrik oksit (FeNO) düzeyleri üzerindeki etkilerini incelemektir. Yöntem: Bu çalışma 40 katılımcı (20 obez ve 20 kontrol) ile gerçekleştirilmiştir. Katılımcılar bir gecelik açlığın ardından 4500 mg arjinin takviyesi ve düşük proteinli (41 mg arjinin/25 g toz ürün) çorba tüketmiştir. Dinlenme metabolizma hızı (DMH) ve 1., 2. ve 5. saat FeNO düzeyleri ölçülmüş ve 3 günlük besin tüketimleri kaydedilmiştir. Bulgular: Obez gruptaki katılımcıların ortalama başlangıç ve 1. saat FeNO düzeyi ile kontrol grubundaki katılımcıların ortalama başlangıç FeNO düzeyi arasında anlamlı bir fark yoktu. Kontrol grubundaki katılımcıların ortalama 2. ve 5. saat FeNO düzeyleri, obez gruptaki katılımcıların ortalama 2. ve 5. saat FeNO düzeylerinden anlamlı olarak daha yüksekti (p<0.05). Sonuç: Normal ağırlıktaki katılımcıların obez katılımcılardan daha yüksek FeNO düzeylerine sahip olması, muhtemelen hava yolu inflamasyonu ve obezite arasındaki ilişkiye işaret eden önceki çalışmaları desteklemektedir.

References

  • Chen Q. Wang Y. Zhang Z. Liu X. Li C. Ma F. Arginine increases tolerance to nitrogen deficiency in Malus hupehensis via alterations in photosynthetic capacity and amino acids metabolism. Frontiers in Plant Science. 2022 Jan 14;12:772086. doi: 10.3389/fpls.2021.772086.
  • Wu G. Bazer FW. Davis TA. Kim SW. Li P. Marc Rhoads J. et al. Arginine metabolism and nutrition in growth. health. and disease. Amino Acids. 2009 May;37(1):153-68. doi: 10.1007/s00726-008-0210-y.
  • Szlas A. Kurek JM. Krejpcio Z. The potential of l-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism—a review. Nutrients. 2022 Feb 24;14(5):961. doi: 10.3390/nu14050961.
  • Mirmiran P. Bahadoran Z. Ghasemi A. Azizi F. The association of dietary L-arginine intake and serum nitric oxide metabolites in adults: A population-based study. Nutrients. 2016;8(5):311. doi: 10.3390/nu8050311.
  • Molani Gol R. Rafraf M. Association between abdominal obesity and pulmonary function in apparently healthy adults: A systematic review. Obesity Research and Clinical Practice. 2021 Sep-Oct;15(5):415-424. doi: 10.1016/j.orcp.2021.06.011.
  • Cortes-Telles A. Ortiz-Farias DL. Pou-Aguilar YN. Almeida-de-la-Cruz L. Perez-Padilla JR. Clinical impact of obesity on respiratory diseases: A real-life study. Lung India. 2021 Jul-Aug;38(4):321-325. doi: 10.4103/lungindia.lungindia_701_20.
  • Dixon AE. Peters U. The effect of obesity on lung function. Expert Review of Respiratory Medicine. 2018 Sep;12(9):755-767. doi: 10.1080/17476348.2018.1506331.
  • Liu C. Li P. Zheng J. Wang Y. Wu W. Liu X. Role of necroptosis in airflow limitation in chronic obstructive pulmonary disease: Focus on small-airway disease and emphysema. Cell Death Discovery. 2022;8:363. doi: 10.1038/s41420-022-01154-7.
  • Gläser S. Ittermann T. Koch B. Völzke H. Wallaschofski H. Nauck M. et al. Airflow limitation. lung volumes and systemic inflammation in a general population. European Respiratory Journal. 2012;39(1):29-37. doi: 10.1183/09031936.00009811.
  • Al Khathlan N. Salem AM. The effect of adiposity markers on fractional exhaled nitric oxide (FeNO) and pulmonary function measurements. International Journal of General Medicine. 2020 Oct 29;13:955-962. doi: 10.2147/IJGM.S280395.
  • Van de Kant KD. Paredi P. Meah S. Kalsi HS. Barnes PJ. Usmani OS. The effect of body weight on distal airway function and airway inflammation. Obesity Research and Clinical Practice. 2016;10(5):564-573. doi: 10.1016/j.orcp.2015.10.005.
  • Ekström S. Hallberg J. Kull I. Protudjer JLP. Thunqvist P. Bottai M. et al. Body mass index status and peripheral airway obstruction in school-age children: A population-based cohort study. Thorax. 2018;73(6):538-545. doi: 10.1136/thoraxjnl-2017-210716.
  • Komakula S. Khatri S. Mermis J. Savill S. Haque S. Rojas M. et al. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respiratory Research. 2007;8:32. doi: 10.1186/1465-9921-8-32.
  • Maniscalco M. Zedda A. Faraone S. Cristiano S. Sofia M. Motta A. Low alveolar and bronchial nitric oxide in severe uncomplicated obesity. Obesity Research and Clinical Practice. 2015;9(6):603-608. doi: 10.1016/j.orcp.2015.03.004.
  • Erkoçoğlu M. Kaya A. Ozcan C. Akan A. Vezir E. Azkur D. et al. The effect of obesity on the level of fractional exhaled nitric oxide in children with asthma. International Archives of Allergy and Immunology. 2013;162(2):156-162. doi: 10.1159/000351454.
  • Uppalapati A. Gogineni S. Espiritu JR. Association between body mass index (BMI) and fraction of exhaled nitric oxide (FeNO) levels in the National Health and Nutrition Examination Survey (NHANES) 2007–2010. Obesity Research and Clinical Practice. 2016;10(6):652-658. doi: 10.1016/j.orcp.2015.11.006.
  • National Institute of Health (2022). Nutrient Recommendations and Databases. [Internet]. National Institutes of Health. USA. [cited 2023 Nov 16]. Available from: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx#dri.
  • American Thoracic Society. European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. 2005. American Journal of Respiratory and Critical Care Medicine. 2005;171(8):912-930. doi: 10.1164/rccm.200406-710ST.
  • Gemicioglu B. Musellim B. Dogan I. Guven K. Fractional exhaled nitric oxide (FeNO) in different asthma phenotypes. Allergy and Rhinology (Providence). 2014;5(3):157-161. doi: 10.2500/ar.2014.5.0099.
  • Olin AC. Aldenbratt A. Ekman A. Ljungkvist G. Jungersten L. Alving K. et al. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respiratory Medicine. 2001 Feb;95(2):153-8. doi: 10.1053/rmed.2000.1010. PMID: 11217912.
  • Kroll JL. Werchan CA. Rosenfield D. Ritz T. Acute ingestion of beetroot juice increases exhaled nitric oxide in healthy individuals. PLoS One. 2018 Jan 25;13(1):e0191030. doi: 10.1371/journal.pone.0191030.
  • Stark H. Purokivi M. Kiviranta J. Randell J. Tukiainen H. Short-term and seasonal variations of exhaled and nasal NO in healthy subjects. Respiratory Medicine. 2007;101(2):265-271. doi: 10.1016/j.rmed.2006.05.009.
  • Thijs W. de Mutsert R. Cessie S. Hiemstra PS. Rosendaal FR. Middeldorp S. et al. Reproducibility of exhaled nitric oxide measurements in overweight and obese adults. BMC Research Notes. 2014;7(1):775. doi: 10.1186/1756-0500-7-775.
  • Holguin F. Comhair SA. Hazen SL. Powers RW. Khatri SS. Bleecker ER. et al. An association between L-arginine/asymmetric dimethyl arginine balance. obesity. and the age of asthma onset phenotype. American Journal of Respiratory and Critical Care Medicine. 2013;187(2):153-159. doi: 10.1164/rccm.201207-1270OC.
  • Ogata H. Yatabe M. Misaka S. Shikama Y. Sato S. Munakata M. et al. Effect of oral L-arginine administration on exhaled nitric oxide (NO) concentration in healthy volunteers. Fukushima Journal of Medical Science. 2013;59(1):43-48. doi: 10.5387/fms.59.43.
There are 25 citations in total.

Details

Primary Language English
Subjects Nutritional Science
Journal Section Research Article
Authors

Neslihan Öner 0000-0001-6773-4963

Eda Köksal 0000-0002-7930-9910

Publication Date June 30, 2024
Submission Date November 4, 2023
Acceptance Date May 14, 2024
Published in Issue Year 2024

Cite

Vancouver Öner N, Köksal E. Effects of Dietary-Like Amount of Arginine Supplementation on Fractional Exhaled Nitric Oxide (FeNO) Levels in Obese and Normal-Weight Individuals. MRR. 2024;7(2):79-87.