Research Article
BibTex RIS Cite

Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi

Year 2017, Volume: 5 Issue: 1, 383 - 386, 01.06.2017
https://doi.org/10.18586/msufbd.322494

Abstract

Bu
çalışmada sıcak presleme yöntemiyle AA 7075 Al alaşımı tozları ve B4C
parçacıkları ile fonksiyonel derecelendirilmiş malzemeler üretilmiştir. AA 7075
matris içerisine ağırlıkça %10 - %
60 arasında değişen oranlarda B4C ilave edilmiştir. Matris malzeme ve
parçacıklar 3 boyutlu karıştırıcıda karıştırılmıştır. Karışım tozlar değişen
sıcaklık (250, 350 ve 450oC) ve basınç (200, 300 ve 400)
değerlerinde preslenmiştir. Presleme işlemi sonrası 5 farklı geçiş bölgesine
sahip fonksiyonel derecelendirilmiş malzemeler üretilmiştir. Geçiş bölgelerinin
sertlik değişimini tespit için makro sertlik ölçümleri yapılmıştır. Üretilen
numuneler tel erozyon yöntemi ile kesilerek standart boyutlarda çapraz kırılma
test numuneleri elde edilmiştir.  En yüksek çapraz kırılma dayanımına 450oC
sıcaklıkta preslenen numunelerde ulaşılmıştır.

References

  • [1] Neubrand A., Neubrand J. Gradient materials: an overview of a novel concept, Zeitschrift fur Metallkunde, 88, 358-371, 1997.
  • [2] Zygmuntowicz J., Miazga A., Konopka K., Kaszuwara W., Metal Particles Size Influence On Graded Structure In Composite Al2O3-Ni, Materials and Technology, 50, 537- 541, 2016.
  • [3] Zhang X., Zhang H. Optimal design of functionally graded foam material under impact loading, International Journal of Mechanical Sciences, 68, 199-211, 2013.
  • [4] Mahamood R. M., Akinlabi E. T., Shukla M., Pityana S. Functionally Graded Material: An Overview, 3, 1593-1597, 2012.
  • [5] Taheri A. H., Hassani B., Moghaddam N. Z. Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach, International Journal of Solids and Structures, 51, 416-429, 2014.
  • [6] Mehboob H., Chang S. H. Evaluation of the development of tissue phenotypes: Bone fracture healing using functionally graded material composite bone plates, Composite Structures, 117, 105-113, 2014.
  • [7] Zhu J., Lai Z., Yin Z., Jeon J., Lee S. Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy, Materials Chemistry and Physics, 68, 130-135, 2001.
  • [8] Nemat-Alla M. M., Ata M. H., Bayoumi M. R., Khair-Eldeen W. Powder metallurgical fabrication and microstructural investigations of Aluminium/Steel functionally graded material, Materials Sciences and Applications, 2, 1708-1718, 2011.

Investigation of Transverse Rupture Strength of AA7xxx Matrix Functional Graded Materials Reinforced B4C

Year 2017, Volume: 5 Issue: 1, 383 - 386, 01.06.2017
https://doi.org/10.18586/msufbd.322494

Abstract

In this
work, functional graded materials were produced by hot pressing with AA7075
alloy powders and B4C particles. B4C particles between
10% and 60% by weight were added to the AA 7075 matrix. Matrix materials and
particles were mixed in a three dimensional mixer. The blend powders were
pressed at varying temperatures (250, 350 and 450°C) and pressures (200, 300
and 400 MPa). Functionally graded materials with 5 different transition zones
were produced after pressing. Macro hardness measurements were made to
determine the hardness change of the transition zones. The produced specimens
were cut using wire electrical discharge machining (WEDM) and transverse
rupture strength test specimens were obtained in standard sizes. The maximum
transverse rupture strength was reached at 450oC samples.

References

  • [1] Neubrand A., Neubrand J. Gradient materials: an overview of a novel concept, Zeitschrift fur Metallkunde, 88, 358-371, 1997.
  • [2] Zygmuntowicz J., Miazga A., Konopka K., Kaszuwara W., Metal Particles Size Influence On Graded Structure In Composite Al2O3-Ni, Materials and Technology, 50, 537- 541, 2016.
  • [3] Zhang X., Zhang H. Optimal design of functionally graded foam material under impact loading, International Journal of Mechanical Sciences, 68, 199-211, 2013.
  • [4] Mahamood R. M., Akinlabi E. T., Shukla M., Pityana S. Functionally Graded Material: An Overview, 3, 1593-1597, 2012.
  • [5] Taheri A. H., Hassani B., Moghaddam N. Z. Thermo-elastic optimization of material distribution of functionally graded structures by an isogeometrical approach, International Journal of Solids and Structures, 51, 416-429, 2014.
  • [6] Mehboob H., Chang S. H. Evaluation of the development of tissue phenotypes: Bone fracture healing using functionally graded material composite bone plates, Composite Structures, 117, 105-113, 2014.
  • [7] Zhu J., Lai Z., Yin Z., Jeon J., Lee S. Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy, Materials Chemistry and Physics, 68, 130-135, 2001.
  • [8] Nemat-Alla M. M., Ata M. H., Bayoumi M. R., Khair-Eldeen W. Powder metallurgical fabrication and microstructural investigations of Aluminium/Steel functionally graded material, Materials Sciences and Applications, 2, 1708-1718, 2011.
There are 8 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

Hanifi Çinici

Uğur Gökmen

Görkem Kırmızı

Ruziye Çamkerten This is me

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 1

Cite

APA Çinici, H., Gökmen, U., Kırmızı, G., Çamkerten, R. (2017). Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 5(1), 383-386. https://doi.org/10.18586/msufbd.322494
AMA Çinici H, Gökmen U, Kırmızı G, Çamkerten R. Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. MAUN Fen Bil. Dergi. June 2017;5(1):383-386. doi:10.18586/msufbd.322494
Chicago Çinici, Hanifi, Uğur Gökmen, Görkem Kırmızı, and Ruziye Çamkerten. “Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5, no. 1 (June 2017): 383-86. https://doi.org/10.18586/msufbd.322494.
EndNote Çinici H, Gökmen U, Kırmızı G, Çamkerten R (June 1, 2017) Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5 1 383–386.
IEEE H. Çinici, U. Gökmen, G. Kırmızı, and R. Çamkerten, “Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi”, MAUN Fen Bil. Dergi., vol. 5, no. 1, pp. 383–386, 2017, doi: 10.18586/msufbd.322494.
ISNAD Çinici, Hanifi et al. “Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 5/1 (June 2017), 383-386. https://doi.org/10.18586/msufbd.322494.
JAMA Çinici H, Gökmen U, Kırmızı G, Çamkerten R. Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. MAUN Fen Bil. Dergi. 2017;5:383–386.
MLA Çinici, Hanifi et al. “Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 1, 2017, pp. 383-6, doi:10.18586/msufbd.322494.
Vancouver Çinici H, Gökmen U, Kırmızı G, Çamkerten R. Sıcak Presleme Yöntemiyle Üretilmiş B4C Takviyeli AA 7xxx Matrisli Fonksiyonel Derecelendirilmiş Malzemelerin Çapraz Kırılma Dayanımının Belirlenmesi. MAUN Fen Bil. Dergi. 2017;5(1):383-6.