Research Article
BibTex RIS Cite

Drinfeld-Sokolov Denkleminin IBSEFM Yöntemiyle Yeni Çözümleri

Year 2018, Volume: 6 Issue: 1, 505 - 510, 28.06.2018

Abstract

Bu
çalışmada, geliştirilmiş Bernoulli fonksiyon yönteminin Drinfeld-Sokolov
sistemine uygulanması sunulmuştur. Literatürdeki diğer makalelerden faklı yeni
çözümler bulduk. Ek olarak, bu makaledeki tüm hesaplamalar ve grafik çizimleri
Wolfram Mathematica 9 programı yardımıyla yapılmıştır.

References

  • [1] Goktas U., Hereman W. Symbolic computation of conserved densities for systems of nonlinear evolution equations. Journal of Symbolic Computation. 24:5, 591-621, 1997. [2] Olver P.J. Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics, Springer, New York, USA, 2nd edition. 1993. [3] Wang J.P. A list of 1 + 1 dimensional integrable equations and their properties. Journal of Nonlinear Mathematical Physics, 9:1, 213-233, 2002. [4] Baskonus H.M., Bulut H. On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves in Randomand Complex Media. 25(4) 720-728. 2015 [5] Wazwaz A.M. Exact and explicit travelling wave solutions for the nonlinear Drinfeld-Sokolov system. Communications in Nonlinear Science and Numerical Simulation. 11:3, 311-325, 2006. [6] El-Wakil S.A. Abdou M.A. Modified extended tanhfunction method for solving nonlinear partial differential equations. Chaos, Solitons Fractals, 31:5, 1256-1264, 2007. [7] Zhang F., Qi J., Yuan W. Modified extended tanhfunction method for solving nonlinear partial differential equations,” Journal of Applied Mathematics, 2013:2013. [8] Zheng B. A new Bernoulli sub-ODE method for constructing traveling wave solutions for two nonlinear equations with any order, U. P. B. Sci. Bull., Series A. 73:3, 2011. [9] Zheng B. Application of A Generalized Bernoulli Sub-ODE Method For Finding Traveling Solutions of Some Nonlinear Equations, WSEAS Transactions on Mathematics, 7:11, 618-626, 2012. [10] Baskonus H.M. Koc D.A. Bulut H. New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Sci. Lett. A, 7:2, 67-76, 2016.

Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method

Year 2018, Volume: 6 Issue: 1, 505 - 510, 28.06.2018

Abstract

In
this study, the Drinfeld-Sokolov system is solved by the application of the
improved Bernoulli sub-equation function method (IBSEFM). We have found new
solutions different from the others articles in the literature. In addition, we
carried all the computations out and the graphics plot in this article by software
Wolfram Mathematica 9.

References

  • [1] Goktas U., Hereman W. Symbolic computation of conserved densities for systems of nonlinear evolution equations. Journal of Symbolic Computation. 24:5, 591-621, 1997. [2] Olver P.J. Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics, Springer, New York, USA, 2nd edition. 1993. [3] Wang J.P. A list of 1 + 1 dimensional integrable equations and their properties. Journal of Nonlinear Mathematical Physics, 9:1, 213-233, 2002. [4] Baskonus H.M., Bulut H. On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves in Randomand Complex Media. 25(4) 720-728. 2015 [5] Wazwaz A.M. Exact and explicit travelling wave solutions for the nonlinear Drinfeld-Sokolov system. Communications in Nonlinear Science and Numerical Simulation. 11:3, 311-325, 2006. [6] El-Wakil S.A. Abdou M.A. Modified extended tanhfunction method for solving nonlinear partial differential equations. Chaos, Solitons Fractals, 31:5, 1256-1264, 2007. [7] Zhang F., Qi J., Yuan W. Modified extended tanhfunction method for solving nonlinear partial differential equations,” Journal of Applied Mathematics, 2013:2013. [8] Zheng B. A new Bernoulli sub-ODE method for constructing traveling wave solutions for two nonlinear equations with any order, U. P. B. Sci. Bull., Series A. 73:3, 2011. [9] Zheng B. Application of A Generalized Bernoulli Sub-ODE Method For Finding Traveling Solutions of Some Nonlinear Equations, WSEAS Transactions on Mathematics, 7:11, 618-626, 2012. [10] Baskonus H.M. Koc D.A. Bulut H. New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Sci. Lett. A, 7:2, 67-76, 2016.
There are 1 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Faruk Düşünceli

Publication Date June 28, 2018
Published in Issue Year 2018 Volume: 6 Issue: 1

Cite

APA Düşünceli, F. (2018). Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method. Mus Alparslan University Journal of Science, 6(1), 505-510.
AMA Düşünceli F. Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method. MAUN Fen Bil. Dergi. June 2018;6(1):505-510.
Chicago Düşünceli, Faruk. “Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method”. Mus Alparslan University Journal of Science 6, no. 1 (June 2018): 505-10.
EndNote Düşünceli F (June 1, 2018) Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method. Mus Alparslan University Journal of Science 6 1 505–510.
IEEE F. Düşünceli, “Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method”, MAUN Fen Bil. Dergi., vol. 6, no. 1, pp. 505–510, 2018.
ISNAD Düşünceli, Faruk. “Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method”. Mus Alparslan University Journal of Science 6/1 (June 2018), 505-510.
JAMA Düşünceli F. Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method. MAUN Fen Bil. Dergi. 2018;6:505–510.
MLA Düşünceli, Faruk. “Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method”. Mus Alparslan University Journal of Science, vol. 6, no. 1, 2018, pp. 505-10.
Vancouver Düşünceli F. Solutions for the Drinfeld-Sokolov Equation Using an IBSEFM Method. MAUN Fen Bil. Dergi. 2018;6(1):505-10.