Review
BibTex RIS Cite

Yakıt Türleri ve Yanma Ortamının Yanma Kaynaklarında Uçucu Organik Bileşiklerin (VOCs) Oluşumuna Etkisi: Derleme Bir Çalışma

Year 2020, Volume: 8 Issue: 1, 747 - 756, 01.06.2020

Abstract



Uçucu Organik Bileşikler (VOCs) zehirleyici veya kanser yapıcı maddeler
olmaları yanı sıra güneş ışığının varlığında fotokimyasal duman oluşturarak
çevreye zarar verirler. Bu çalışmada ilk önce VOC’lerin çevreye ve insan sağlığına
zararları tartışılmıştır. Peşi sıra önemli uluslararası kuruluşların VOC'i
tanımı ve sınıflandırılması ayrıntılı bir şekilde verilmiş ve bu tanımlama ve
sınıflandırma bağlamında
yasama
denetiminin tabi tuttukları en zararlı VOC’ler
irdelenmiştir. Ardından çalışmanın ana konusu olan termik güç santralleri ile
içten yanmalı motorlar tarafından çevreye salınan zararlı ve emisyonu yüksek
VOC bileşenleri incelenmiş ve salınan bu zararlı gazların emisyonuna etki eden
parametreler ayrı başlıklar altında ele alınmıştır. Yanma olayında VOC'lerin
salınımını etkileyen parametreler, yakıt ve yanma sistemine göre değişkenlik
göstermektedir. Bu parametrelerin VOC'lerin salınımına etkilerinin tespitiyle
bu zararlı bileşenlerin emisyonunun azaltılabilmesi için gerekli şartlar
belirlenmeye çalışılmıştır.
Böylece termik güç
santralleri ile içten yanmalı motorlarda fosil yakıtların yanmasıyla
oluşabilecek VOC emisyonlarının azaltılması konusunda bir fikir oluşturulmaya
çalışılmıştır.



References

  • Sahu L.K. Volatile Organic Compounds and their Measurements in the Troposphere, Curr Sci., 102:12 1645-1649, 2012.
  • Cai C., Geng F., Tie X., Yu Q., An J. Characteristics and Source Apportionment of VOCs Measured in Shanghai, China, Atmos Environ, 44:38 5005-5014, 2010.
  • Wang M., Shao M., Chen W., Yuan B., Lu S., Zhang Q. Validation of Emission Inventories by Measurements of Ambient Volatile Organic Compounds in Beijing, China, Atmos Chem Phys Discuss, 13:10 26933-26979, 2013.
  • Schauer J.J., Kleeman M.J., Cass G.R., Simoneit B.R.T. Measurement of Emissions from Aair Pollution Sources. 2. C1 through C30 Organic Compounds from Medium Duty Diesel Trucks, Environ Sci Technol, 33:10 1578-1587, 1999.
  • Siegl W.O., Hammerle R.H., Herrmann H.M., Wenclawiak B.W., Luers-Jongen B. Organic Emissions Profile for a Light-Duty Diesel Vehicle, Atmos Environ, 33 797-805, 1999.
  • Lloyd A.C., Cackette T.A. Diesel Engines: Environmental Impact and Control, J Air Waste Manage Assoc, 51 809-847, 2001.
  • Maricq M.M. Chemical Characterization of Particulate Emissions from Diesel Engines: A Review, J Aerosol Sci, 38:11 1079-1118, 2007.
  • Yamada H. Contribution of Evaporative Emissions from Gasoline Vehicles toward Total VOC Emissions in Japan, Sci Total Environ, 449 143-149, 2013.
  • Inomata S., Yamada H., Tanimoto H. Investigation on VOC Emissions from Automobile Sources by Means of Online Mass Spectrometry, Curr Pollut Reports, 2:3 188-199, 2016.
  • European Environment Agency (EEA). Air Quality in Europe 2019, Copenhagen, 2019.
  • Elsom D.M. Air Quality Management-Highlighting Good Practice, Clean Air Environ Qual, 38:1 36-43, 2004.
  • Gaur M., Singh R., Shukla A. Volatile Organic Compounds in India: Concentration and Sources, J Civ Environ Eng., 6:5 1-7, 2016.
  • Civan M.Y., Kuntasal Ö.O., Tuncel G. Source Apportionment of Ambient Volatile Organic Compounds in Bursa, a Heavily Industrialized City in Turkey, Environ Forensics, 12:4 357-370, 2011.
  • Yurdakul S., Civan M.Y., Tuncel G. Volatile Organic Compounds in Suburban Ankara Atmosphere, Turkey: Sources and Variability, Atmos Res., 120:121 298-311, 2013.
  • USEPA. Technical Overview of Volatile Organic Compounds, Available from: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds, Retrieved August 30, 2018.
  • Environment Canada. Volatile Organic Compounds Overview, Available from: https://www.canada.ca/en/environment-climate-change/services/managing-pollution/sources-industry/volatile-organic-compounds-consumer-commercial/overview.html, Retrieved August 30, 2018.
  • EUR-Lex. Directive. EUR-Lex. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004, Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1435853829678&uri=CELEX:32004L0042, Retrieved August 30, 2018.
  • Yang M. A Current Global View of Environmental and Occupational Cancers, J Environ Sci Heal Part C, 29 223-249, 2011.
  • Frenklach M., Wang H. Detailed modelling of PAH Profiles in a Sooting Low-pressure Acetylene Flame, In (Ed: Bockhorn H.). Soot Formation in Combustion. Springer: Heidelberg, p. 165-192, 1994.
  • Miller J., Melius C. Kinetic and Thermodynamic Issues in the Formation of Aromatic-Compounds in Flames of Aliphatic Fuels, Combust Flame. 91 21-39, 1992.
  • Derwent R. Hydrocarbons in the Atmosphere: Their Sources, Distributions and Fates, In (Eds: Leslie G., Perry R.), VOCs in the Environment, Proceedings of the International Conference, Lonsdale Press Ltd: London, 1993.
  • Murlis J. Volatile Organic Compounds: UK Policy, In (Eds: Leslie G., Perry R.), VOCs in the Environment, Proceedings of the International Conference, Lonsdale Press Ltd: London, 1993.
  • Sandroni S., Anfossi D. Historical Data of Surface Ozone at Tropical Latitudes, Sci Total Environ., 148 23-29, 1994.
  • Tsani-Bazaca E, De Saeger E. Comparative Evaluation of VOC Measurements in Some EEC Laboratories, In (Eds: Leslie G., Perry R), VOCs in the Environment, Proceedings of the International Conference. Lonsdale Press Ltd: London, 1993.
  • Derwent R., Jenkin M. Hydrocarbons and Long-Range Transport of Ozone and PAN Across Europe, Atmos Environ, 25A 1661-1678, 1991.
  • Derwent R., Jenkin M., Saunders S. Photochemical Ozone Creation Potentials for a Large Number of Reactive Hydrocarbons under European Conditions, Atmos Environ, 30 181-199, 1996.
  • Schroeder H. Developmental Brain and Behavior Toxicity of Air Pollutants: A Focus on the Effects of Polycyclic Aromatic Hydrocarbons (PAHs), Crit Rev Environ Sci Technol, 41 2026-2047, 2011
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 2: Solid Fuels, Mutat Res, 762 108-122, 2014.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 1. Principles and Background, Mutat Res., 762 76-107, 2014.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 3: Diesel and Gasoline, Mutat Res. 763 30-85, 2015.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 5. Summary, Comparisons, and Conclusions, Mutat Res, 763 103-147, 2015.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 4- Alternative Fuels, Mutat Res. 763 86-102, 2015.
  • Zhou J., You Y., Bai Z., Hu Y., Zhang J., Zhang N. Health Risk Assessment of Personal Inhalation Exposure to Volatile Organic Compounds in Tianjin, China Sci Total Environ, 409 452-459, 2011.
  • Stafford D., West R., White A. Review of Occupational and Environmental Exposures to Organics and Associations with Leukaemia and Preleukaemia. In (Eds: Leslie G., Perry R.), VOCs in the Environment, Proceedings of the International Conference, Lonsdale Press Ltd: London, 1993.
  • Masclet P., Bresson M., Mouvier G. PAHs Emitted by Power Stations, and Influence of Combustion Conditions, Fuel, 66 556-562, 1987.
  • Garcia J., Beyne-Masclet S., Mouvier G., Masclet P. Emissions of Volatile Organic Compounds by Coal-Fired Power Stations, Atmos Environ, 26A: 1589-1597, 1992.
  • Miller C., Srivastava R., Ryan J. Emissions of Organic Hazardous Air-Pollutants from the Combustion of Pulverized Coal in a Small-Scale Combustor, Environ Sci Technol, 28 1150-1158, 1994.
  • Harrison P. In Flame Measurement of Specific VOCs from Combustion of Pulverised Fossil and Renewable Fuels, Imperial College London, 2002.
  • Arslan O. Modelling Emissions of Volatile Organic Compounds (VOCs) in Modern Power Plants, Imperial College London, 2002.
  • Jenkin M.E., Saunders S.M., Wagner V., Pilling M.J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds, Atmos Chem Phys., 3:1 181-193, 2003.
  • Saunders S.M., Jenkin M.E., Derwent R.G., Pilling M.J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric Degradation of Non-Aromatic Volatile Organic Compounds, Atmos Chem Phys., 3:1 161-180, 2003.
  • Winebrake J.J., Wang M.Q., He D.Q. Toxic Emissions from Mobile Sources: a Total Fuel-Cycle Analysis for Conventional and Alternative Fuel Vehicles, J Air Waste Manage Assoc., 51 1073-1086, 2001.
  • Muezzinoglu A., Odabasi M., Onat L. Volatile Organic Compounds in the Air of Izmir, Turkey, Atmos Environ., 35:4 753-760, 2001.
  • Caudill M. Multivariate Receptor Modeling Applied to PM2.5 and Air Toxics Monitoring Sites in the Midwest, 2010.
  • Melius C., Colvin M., Marinov N., Pitz W., Senkan S. Reaction Mechanisms in Aromatic Hydrocarbon Formation Involving the C5H5 Cyclopentadienyl Moiety, In 26th Symposium (International) on Combustion, 685-692, 1996.
  • Castaldi M., Marinov N., Melius C., Huang J, Senkan S., Pitz W. Experimental and Modeling Investigation of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Premixed Ethylene Fame, In 26th Symposium (International) on Combustion, 693-702, 1996.
  • Bonfanti L., Demichele G., Riccardi J., Lopezdoriga E. Influence of Coal Type and Operating Conditions on the Formation of Incomplete Combustion Products. Pilot Plant Experiments, Combust Sci Technol., 101 505-525, 1994.
  • Pisupati S., Wasco R., Scaroni A. An Investigation on Polycyclic Aromatic Hydrocarbon Emissions from Pulverized Coal Combustion Systems. J Hazard Mater, 74:1 91-107, 2000.
  • Chagger H., Jones J., Pourkashanian M., Williams A., Owen A., Fynes G. Emission of Volatile Organic Compounds from Coal Combustion, Fuel, 78 1527-1538, 1999.
  • Sloss L., Smith I. Organic Compounds from Coal Utilisation. London, 1993.
  • Chagger H., Jones J., Pourkashanian M., Williams A. The Nature of Hydrocarbon Emissions Formed During the Cooling of Combustion Products, Fuel, 76:9 861-864, 1997.
  • Brooks G. Air Toxic Emissions from Coal and Oil Combustion Sources, Research Triangle Park, NC, 1989.
  • Citiroglu M., Yardim M., Ekinci E. Determination of Polycyclic Aromatic Hydrocarbons (PAH) in Cyclone and Bottom Ashes in a Fluidised Bed Combustor. In: FBC Technology and the Environmental Challenge. In Proceedings of the Institute of Energy’s 5th International Fluidised Combustion Conference, Adam Hilger, 311-318, 1991.
  • Chadwick M., Highton N., Lindman N.(Eds). The Environmental Significance of Coal-derived Carbon Compounds. In Environmental Impacts of Coal Mining Utilization. Pergamon: Oxford, UK, p. 218-244, 1987.
  • Robert C. An Ecological Risk Assessment of Formaldehyde, Hum Ecol Risk Assess An Int J, 9:2 483-509, 2003.
  • Wallington T.J., Kaiser E.W., Farrell J.T. Automotive Fuels and Internal Combustion Engines: A Chemical Perspective, Chem Soc Rev., 35-4 335-347, 2006.
  • Rubin E.S. Introduction to Engineering the Environment. McGraw-Hill: Boston, 2001.
  • Baumbach G. Air Quality Control. Springer Verlag: Berlin, 1996.
  • Lapuerta M., Martos F., Herreros J. Effect of Engine Operating Conditions on the Size of Primary Particles Composing Diesel Soot Agglomerates, J Aerosol Sci., 38:4 455-466, 2007.
  • Rakopoulos C., Giakoumis E. Review of Thermodynamic Diesel Engine Simulations under Transient Operating Conditions, 2006.
  • Nam E., Kishan S., Baldauf R., Fulper C., Sabisch M., Warila J. Temperature Effects on Particulate Matter Emissions from Light-Duty, Gasoline-Powered Motor Vehicles, Environ Sci Technol. 44:12 4672-4677, 2010.
  • Takeyuki K., Bae M. High Combustion Temperature for the Reduction of Particulate in Diesel Engines, SAE Trans., 97 692-701, 1988.
  • Vander Wal R., Mueller C. Initial Investigation of Effects of Fuel Oxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine, Energy Fuels, 20:6 2364-2369, 2006.
  • Germane G.J., Wood C.G., Hess C.C. Lean Combustion in Spark-Ignited Internal Combustion Engines-A Review, Presented at the October 31, 1983.
  • Soid S., Zainal Z. Spray and Combustion Characterization for Internal Combustion Engines Using Optical Measuring Techniques-A Review, Energy, 36:2 724-741, 2011.
  • Abu-Jrai A., Tsolakis A., Megaritis A. The influence of H2 and CO on Diesel Engine Combustion Characteristics, Exhaust Gas Emissions, and after Treatment Selective Catalytic NOx Reduction, Int J Hydrogen Energy, 32:15: 3565-3571, 2007.
  • Reşitoğlu İ., Altinişik K., Keskin A. The Pollutant Emissions from Diesel-Engine Vehicles and Exhaust Aftertreatment Systems, Clean Technol Environ Policy, 17:1 15-27, 2015.
  • Pereira K.L., Dunmore R., Whitehead J., Alfarra M.R., Allan J.D., Alam M.S., Technical Note: Use of an Atmospheric Simulation Chamber to Investigate the Effect of Different Engine Conditions on Unregulated VOC-IVOC Diesel Exhaust Emissions, Atmos Chem Phys., 18:15 11073-11096, 2018.
  • Arslan Ö. The Impact of the Release of VOCs and PAHs from Power Stations on the Environment and Human, 13th International Combustion Symposium, 9-11 September, Bursa-Türkiye, 2015.

Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review

Year 2020, Volume: 8 Issue: 1, 747 - 756, 01.06.2020

Abstract




Volatile Organic Compounds (VOCs) are toxic or or carcinogenic, as well as creating photochemical fumes in the
presence of sunlight, damaging the environment. In this study, the damages of
VOCs to the environment and human health are discussed first. In addition, the
definition and classification of the VOC of important international bodies are
given in detail and the VOCs that are considered the most harmful and subject
to legislative purposes in the context of this definition and classification
are examined.
Then, the harmful and abundant of VOC species emitted by the power plants
and internal combustion engines, which are the main subject of the study, were
examined and the parameters affecting the emission of these emitted gases are
discussed under separate titles.
The parameters affecting the VOCs release in the
combustion event vary depending on the fuel and combustion system. By
determining the effects of these parameters on VOCs emission, necessary
conditions were determined to reduce the emission of these harmful components. Thus,
some insights were tried to be given about the reduction of VOC emissions that
may occur by burning fossil fuels in thermal power plants and internal
combustion engines
.




References

  • Sahu L.K. Volatile Organic Compounds and their Measurements in the Troposphere, Curr Sci., 102:12 1645-1649, 2012.
  • Cai C., Geng F., Tie X., Yu Q., An J. Characteristics and Source Apportionment of VOCs Measured in Shanghai, China, Atmos Environ, 44:38 5005-5014, 2010.
  • Wang M., Shao M., Chen W., Yuan B., Lu S., Zhang Q. Validation of Emission Inventories by Measurements of Ambient Volatile Organic Compounds in Beijing, China, Atmos Chem Phys Discuss, 13:10 26933-26979, 2013.
  • Schauer J.J., Kleeman M.J., Cass G.R., Simoneit B.R.T. Measurement of Emissions from Aair Pollution Sources. 2. C1 through C30 Organic Compounds from Medium Duty Diesel Trucks, Environ Sci Technol, 33:10 1578-1587, 1999.
  • Siegl W.O., Hammerle R.H., Herrmann H.M., Wenclawiak B.W., Luers-Jongen B. Organic Emissions Profile for a Light-Duty Diesel Vehicle, Atmos Environ, 33 797-805, 1999.
  • Lloyd A.C., Cackette T.A. Diesel Engines: Environmental Impact and Control, J Air Waste Manage Assoc, 51 809-847, 2001.
  • Maricq M.M. Chemical Characterization of Particulate Emissions from Diesel Engines: A Review, J Aerosol Sci, 38:11 1079-1118, 2007.
  • Yamada H. Contribution of Evaporative Emissions from Gasoline Vehicles toward Total VOC Emissions in Japan, Sci Total Environ, 449 143-149, 2013.
  • Inomata S., Yamada H., Tanimoto H. Investigation on VOC Emissions from Automobile Sources by Means of Online Mass Spectrometry, Curr Pollut Reports, 2:3 188-199, 2016.
  • European Environment Agency (EEA). Air Quality in Europe 2019, Copenhagen, 2019.
  • Elsom D.M. Air Quality Management-Highlighting Good Practice, Clean Air Environ Qual, 38:1 36-43, 2004.
  • Gaur M., Singh R., Shukla A. Volatile Organic Compounds in India: Concentration and Sources, J Civ Environ Eng., 6:5 1-7, 2016.
  • Civan M.Y., Kuntasal Ö.O., Tuncel G. Source Apportionment of Ambient Volatile Organic Compounds in Bursa, a Heavily Industrialized City in Turkey, Environ Forensics, 12:4 357-370, 2011.
  • Yurdakul S., Civan M.Y., Tuncel G. Volatile Organic Compounds in Suburban Ankara Atmosphere, Turkey: Sources and Variability, Atmos Res., 120:121 298-311, 2013.
  • USEPA. Technical Overview of Volatile Organic Compounds, Available from: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds, Retrieved August 30, 2018.
  • Environment Canada. Volatile Organic Compounds Overview, Available from: https://www.canada.ca/en/environment-climate-change/services/managing-pollution/sources-industry/volatile-organic-compounds-consumer-commercial/overview.html, Retrieved August 30, 2018.
  • EUR-Lex. Directive. EUR-Lex. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004, Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1435853829678&uri=CELEX:32004L0042, Retrieved August 30, 2018.
  • Yang M. A Current Global View of Environmental and Occupational Cancers, J Environ Sci Heal Part C, 29 223-249, 2011.
  • Frenklach M., Wang H. Detailed modelling of PAH Profiles in a Sooting Low-pressure Acetylene Flame, In (Ed: Bockhorn H.). Soot Formation in Combustion. Springer: Heidelberg, p. 165-192, 1994.
  • Miller J., Melius C. Kinetic and Thermodynamic Issues in the Formation of Aromatic-Compounds in Flames of Aliphatic Fuels, Combust Flame. 91 21-39, 1992.
  • Derwent R. Hydrocarbons in the Atmosphere: Their Sources, Distributions and Fates, In (Eds: Leslie G., Perry R.), VOCs in the Environment, Proceedings of the International Conference, Lonsdale Press Ltd: London, 1993.
  • Murlis J. Volatile Organic Compounds: UK Policy, In (Eds: Leslie G., Perry R.), VOCs in the Environment, Proceedings of the International Conference, Lonsdale Press Ltd: London, 1993.
  • Sandroni S., Anfossi D. Historical Data of Surface Ozone at Tropical Latitudes, Sci Total Environ., 148 23-29, 1994.
  • Tsani-Bazaca E, De Saeger E. Comparative Evaluation of VOC Measurements in Some EEC Laboratories, In (Eds: Leslie G., Perry R), VOCs in the Environment, Proceedings of the International Conference. Lonsdale Press Ltd: London, 1993.
  • Derwent R., Jenkin M. Hydrocarbons and Long-Range Transport of Ozone and PAN Across Europe, Atmos Environ, 25A 1661-1678, 1991.
  • Derwent R., Jenkin M., Saunders S. Photochemical Ozone Creation Potentials for a Large Number of Reactive Hydrocarbons under European Conditions, Atmos Environ, 30 181-199, 1996.
  • Schroeder H. Developmental Brain and Behavior Toxicity of Air Pollutants: A Focus on the Effects of Polycyclic Aromatic Hydrocarbons (PAHs), Crit Rev Environ Sci Technol, 41 2026-2047, 2011
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 2: Solid Fuels, Mutat Res, 762 108-122, 2014.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 1. Principles and Background, Mutat Res., 762 76-107, 2014.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 3: Diesel and Gasoline, Mutat Res. 763 30-85, 2015.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 5. Summary, Comparisons, and Conclusions, Mutat Res, 763 103-147, 2015.
  • Claxton L. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and their Emissions: Part 4- Alternative Fuels, Mutat Res. 763 86-102, 2015.
  • Zhou J., You Y., Bai Z., Hu Y., Zhang J., Zhang N. Health Risk Assessment of Personal Inhalation Exposure to Volatile Organic Compounds in Tianjin, China Sci Total Environ, 409 452-459, 2011.
  • Stafford D., West R., White A. Review of Occupational and Environmental Exposures to Organics and Associations with Leukaemia and Preleukaemia. In (Eds: Leslie G., Perry R.), VOCs in the Environment, Proceedings of the International Conference, Lonsdale Press Ltd: London, 1993.
  • Masclet P., Bresson M., Mouvier G. PAHs Emitted by Power Stations, and Influence of Combustion Conditions, Fuel, 66 556-562, 1987.
  • Garcia J., Beyne-Masclet S., Mouvier G., Masclet P. Emissions of Volatile Organic Compounds by Coal-Fired Power Stations, Atmos Environ, 26A: 1589-1597, 1992.
  • Miller C., Srivastava R., Ryan J. Emissions of Organic Hazardous Air-Pollutants from the Combustion of Pulverized Coal in a Small-Scale Combustor, Environ Sci Technol, 28 1150-1158, 1994.
  • Harrison P. In Flame Measurement of Specific VOCs from Combustion of Pulverised Fossil and Renewable Fuels, Imperial College London, 2002.
  • Arslan O. Modelling Emissions of Volatile Organic Compounds (VOCs) in Modern Power Plants, Imperial College London, 2002.
  • Jenkin M.E., Saunders S.M., Wagner V., Pilling M.J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds, Atmos Chem Phys., 3:1 181-193, 2003.
  • Saunders S.M., Jenkin M.E., Derwent R.G., Pilling M.J. Protocol for the Development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric Degradation of Non-Aromatic Volatile Organic Compounds, Atmos Chem Phys., 3:1 161-180, 2003.
  • Winebrake J.J., Wang M.Q., He D.Q. Toxic Emissions from Mobile Sources: a Total Fuel-Cycle Analysis for Conventional and Alternative Fuel Vehicles, J Air Waste Manage Assoc., 51 1073-1086, 2001.
  • Muezzinoglu A., Odabasi M., Onat L. Volatile Organic Compounds in the Air of Izmir, Turkey, Atmos Environ., 35:4 753-760, 2001.
  • Caudill M. Multivariate Receptor Modeling Applied to PM2.5 and Air Toxics Monitoring Sites in the Midwest, 2010.
  • Melius C., Colvin M., Marinov N., Pitz W., Senkan S. Reaction Mechanisms in Aromatic Hydrocarbon Formation Involving the C5H5 Cyclopentadienyl Moiety, In 26th Symposium (International) on Combustion, 685-692, 1996.
  • Castaldi M., Marinov N., Melius C., Huang J, Senkan S., Pitz W. Experimental and Modeling Investigation of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Premixed Ethylene Fame, In 26th Symposium (International) on Combustion, 693-702, 1996.
  • Bonfanti L., Demichele G., Riccardi J., Lopezdoriga E. Influence of Coal Type and Operating Conditions on the Formation of Incomplete Combustion Products. Pilot Plant Experiments, Combust Sci Technol., 101 505-525, 1994.
  • Pisupati S., Wasco R., Scaroni A. An Investigation on Polycyclic Aromatic Hydrocarbon Emissions from Pulverized Coal Combustion Systems. J Hazard Mater, 74:1 91-107, 2000.
  • Chagger H., Jones J., Pourkashanian M., Williams A., Owen A., Fynes G. Emission of Volatile Organic Compounds from Coal Combustion, Fuel, 78 1527-1538, 1999.
  • Sloss L., Smith I. Organic Compounds from Coal Utilisation. London, 1993.
  • Chagger H., Jones J., Pourkashanian M., Williams A. The Nature of Hydrocarbon Emissions Formed During the Cooling of Combustion Products, Fuel, 76:9 861-864, 1997.
  • Brooks G. Air Toxic Emissions from Coal and Oil Combustion Sources, Research Triangle Park, NC, 1989.
  • Citiroglu M., Yardim M., Ekinci E. Determination of Polycyclic Aromatic Hydrocarbons (PAH) in Cyclone and Bottom Ashes in a Fluidised Bed Combustor. In: FBC Technology and the Environmental Challenge. In Proceedings of the Institute of Energy’s 5th International Fluidised Combustion Conference, Adam Hilger, 311-318, 1991.
  • Chadwick M., Highton N., Lindman N.(Eds). The Environmental Significance of Coal-derived Carbon Compounds. In Environmental Impacts of Coal Mining Utilization. Pergamon: Oxford, UK, p. 218-244, 1987.
  • Robert C. An Ecological Risk Assessment of Formaldehyde, Hum Ecol Risk Assess An Int J, 9:2 483-509, 2003.
  • Wallington T.J., Kaiser E.W., Farrell J.T. Automotive Fuels and Internal Combustion Engines: A Chemical Perspective, Chem Soc Rev., 35-4 335-347, 2006.
  • Rubin E.S. Introduction to Engineering the Environment. McGraw-Hill: Boston, 2001.
  • Baumbach G. Air Quality Control. Springer Verlag: Berlin, 1996.
  • Lapuerta M., Martos F., Herreros J. Effect of Engine Operating Conditions on the Size of Primary Particles Composing Diesel Soot Agglomerates, J Aerosol Sci., 38:4 455-466, 2007.
  • Rakopoulos C., Giakoumis E. Review of Thermodynamic Diesel Engine Simulations under Transient Operating Conditions, 2006.
  • Nam E., Kishan S., Baldauf R., Fulper C., Sabisch M., Warila J. Temperature Effects on Particulate Matter Emissions from Light-Duty, Gasoline-Powered Motor Vehicles, Environ Sci Technol. 44:12 4672-4677, 2010.
  • Takeyuki K., Bae M. High Combustion Temperature for the Reduction of Particulate in Diesel Engines, SAE Trans., 97 692-701, 1988.
  • Vander Wal R., Mueller C. Initial Investigation of Effects of Fuel Oxygenation on Nanostructure of Soot from a Direct-Injection Diesel Engine, Energy Fuels, 20:6 2364-2369, 2006.
  • Germane G.J., Wood C.G., Hess C.C. Lean Combustion in Spark-Ignited Internal Combustion Engines-A Review, Presented at the October 31, 1983.
  • Soid S., Zainal Z. Spray and Combustion Characterization for Internal Combustion Engines Using Optical Measuring Techniques-A Review, Energy, 36:2 724-741, 2011.
  • Abu-Jrai A., Tsolakis A., Megaritis A. The influence of H2 and CO on Diesel Engine Combustion Characteristics, Exhaust Gas Emissions, and after Treatment Selective Catalytic NOx Reduction, Int J Hydrogen Energy, 32:15: 3565-3571, 2007.
  • Reşitoğlu İ., Altinişik K., Keskin A. The Pollutant Emissions from Diesel-Engine Vehicles and Exhaust Aftertreatment Systems, Clean Technol Environ Policy, 17:1 15-27, 2015.
  • Pereira K.L., Dunmore R., Whitehead J., Alfarra M.R., Allan J.D., Alam M.S., Technical Note: Use of an Atmospheric Simulation Chamber to Investigate the Effect of Different Engine Conditions on Unregulated VOC-IVOC Diesel Exhaust Emissions, Atmos Chem Phys., 18:15 11073-11096, 2018.
  • Arslan Ö. The Impact of the Release of VOCs and PAHs from Power Stations on the Environment and Human, 13th International Combustion Symposium, 9-11 September, Bursa-Türkiye, 2015.
There are 69 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ömer Arslan 0000-0003-4190-5271

Bülent Özdalyan This is me 0000-0002-7711-6357

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Arslan, Ö., & Özdalyan, B. (2020). Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review. Mus Alparslan University Journal of Science, 8(1), 747-756.
AMA Arslan Ö, Özdalyan B. Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review. MAUN Fen Bil. Dergi. June 2020;8(1):747-756.
Chicago Arslan, Ömer, and Bülent Özdalyan. “Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review”. Mus Alparslan University Journal of Science 8, no. 1 (June 2020): 747-56.
EndNote Arslan Ö, Özdalyan B (June 1, 2020) Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review. Mus Alparslan University Journal of Science 8 1 747–756.
IEEE Ö. Arslan and B. Özdalyan, “Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review”, MAUN Fen Bil. Dergi., vol. 8, no. 1, pp. 747–756, 2020.
ISNAD Arslan, Ömer - Özdalyan, Bülent. “Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review”. Mus Alparslan University Journal of Science 8/1 (June 2020), 747-756.
JAMA Arslan Ö, Özdalyan B. Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review. MAUN Fen Bil. Dergi. 2020;8:747–756.
MLA Arslan, Ömer and Bülent Özdalyan. “Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review”. Mus Alparslan University Journal of Science, vol. 8, no. 1, 2020, pp. 747-56.
Vancouver Arslan Ö, Özdalyan B. Influence of Fuel Types and Combustion Environment on Emission of VOCs from Combustion Sources: A Review. MAUN Fen Bil. Dergi. 2020;8(1):747-56.