Research Article
BibTex RIS Cite

Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris

Year 2022, Volume: 10 Issue: 2, 1013 - 1022, 26.12.2022
https://doi.org/10.18586/msufbd.1126542

Abstract

In this study, biosynthesis and in vitro phytochemical composition, antibacterial and antioxidant activities of silver nanoparticles were investigated by using aqueous leaf, flower and root extracts of Primula vulgaris (P. vulgaris subsp. vulgaris). The synthesized silver nanoparticles (AgNPs) were confirmed by color conversion and ultraviolet-visible (UV-visible) spectrophotometry. The appearance of a dark brown color and a UV absorption spectrum range at 440 nm confirmed the synthesized silver nanoparticles. The antimicrobial activity of silver nanoparticles synthesized from the leaf of P. vulgaris; S. aureus 25±1, S. epidermidis 20±1, P. aeruginosa 20±1, A. hydrophila 21±1, C. albicans 25±1, C. tropicalis 25±1, C. parapsilosis 22±1 and C. glabrata 20±1 mm zone diameter was determined. The most antimicrobial effect of P. vulgaris leaf aqueous extract; S. aureus 20±1, S. epidermidis 18±1, A.hydrophila 15±1, P. aeruginosa 12±2, C. albicans 18±1, C. glabrata 18±1, C.tropicalis15±2, and C. parapsilosis 15±2 mm zone diameter was revealed. The presence of flavonoids, terpenoids, protein, and carbohydrates was found to be higher in silver nanoparticles synthesized in the flower part of P. vulgaris, according to phytochemical screening. While saponins were detected in P. vulgaris root extracts, tannins and protein were detected in the leaf extract. The flower had the highest total phenolic extract content of the silver nanoparticle (29.08±0 mg GAE/g DW), while the leaf and root had the lowest total phenolic content of 9.06±0.5 and 8.64±3.3 mg GAE/g DW, respectively. The flower had the highest total phenolic extract content of the plant aqueous extracts (25.10±0.2 mg GAE/g DW), while the leaf and root had the lowest (8.28±0.5 and 5.20±0.0 mg GAE/g DW, respectively).The DPPH (1,1-Diphenyl-2-picrylhydrazil) assay was used to assess free radical scavenging activity. The antioxidant activity of AgNPs biosynthesized using P. vulgaris flower extract was 90.6 %, while P. vulgaris flower aqueous extracts were 86.3 %.
This can be concluded that silver nanoparticles synthesized using P. vulgaris flower extract are useful in the preparation of pharmacologically useful drugs.

Supporting Institution

Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

Proje No: SAG.A4.19.001

Thanks

The authors express their gratitude to the research council of Kırşehir Ahi Evran University for the financial support during the course of this project.

References

  • [1] Çi̇ftçi̇ H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Bioactive Nanoparticles Synthesized by Green Method BSJ Eng Sci, 4, 1-14, 2021.
  • [2] Kumar V, Yadav, SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol Biotechnol, 84, 151–157, 2009.
  • [3] Haverkamp RG, Marshall AT, Agterveld DV. Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanopart Res, 9, 697–700, 2007
  • [4] Dağlıoğlu Y, Öztürk B. Green Synthesis of Silver Nanoparticles Using Mandragora autumnalis; Its Characterization, Antioxidant and Antimicrobial Activities. Erzincan University Journal of Science and Technology, 14, 1039-1054, 2021.
  • [5] Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog, 22, 577–583, 2006.
  • [6] Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem, 13, 2638–2650, 2011.
  • [7] Ozkan MT, Aliyazicioglu R, Demir S, Misir S, Turan I, Yildirmis S, Aliyazicioglu Y. Phenolic characterisation and antioxidant activity of Primula vulgaris and its antigenotoxic effect on fibroblast cells. Jundishapur Na Pharm Prod, 12, e40073, 2017.
  • [8] Mostafa FA, Gamal MA, Sabrin IRM, Ehab ES. Antioxidant and anti-inflamatory activities of phenolic constituents from Primula elatior L. aerial part. Int J Pharmacogn Phytochemi Res, 6 ,74-78, 2014.
  • [9] Schmidt Lebuhn AN, de Vos JM, Keller B, Conti E. Phylogenetic analysis of Primula section Primula reveals rampant non-monophyly among morphologically distinct species. Mol. Phylogenet Evol, 65, 23-24, 2012.
  • [10] Jager AK, Gauguin B, Adsersen A, Gudiksen L. Screening of plants used in Danish folk medicine to treat epilepsy and convulsions. J. Ethnopharmacol, 105, 294–300, 2006.
  • [11] Yaylı N, Çelik G, Korkmaz B, Çoşkunçelebi K, Karaoğlu ŞA. Altitude variation in the composition of essential oils fatty acid methyl esters and antimicrobial activities of two subspecies of Primula vulgaris grown in Turkey. Nat Prod Commun, 11, 1505-1510, 2016.
  • [12] Majid A., Hassan S., Hussain W., Khan A., Hassan A., Khan, A., Khan T.M., Ahmad T., Rehman MU, Pakhtunkhwa K. In vitro Approaches of Primula vulgaris Leaves and Roots Extraction against Human Pathogenic Bacterial Strains. World Appl Sci J, 30, 575 -80, 2014.
  • [13] Basbülbül G, Ozmen A, Biyik HH, Sen O. Antimitotic and antibacterial effects of the Primula veris L. flower extracts. Caryologia, 61, 88-91, 2008.
  • [14] Aslam K, Nawchoo IA, Ganai BA. In Vitro Antioxidant, Antibacterial Activity and Phytochemical Studies of Primula Denticulata An Important Medicinal Plant of Kashmir Himalaya. Int J Pharmacol Res, 5, 49 -56, 2015.
  • [15] Demir N, Gungor AA, Nadaroglu H, Demir Y. The antioxidant and radical scavenging activities of Primrose (Primula vulgaris). Eur J Exp Biol, 4, 395 -401, 2014.
  • [16] Park HR, Park E, Rim R, Jeon KI, Hwang JH, Lee S. Antioxidant activity of extracts from Acanthopanax senticosus. Afr J Biotechnol, 5, 2388-2396, 2006.
  • [17] Magaldi S, Camero T, Susceptibilidad de Candida albicans in vitro‘ mediante los pozos de difusión. Boletın Venezolano de Infectologia, 7, 5-8, 1997.
  • [18] Parekh J, Chanda SV. In vitro antimicrobial activity and phytochemical analysis of some indian medicinal plants. Turk J Biol, 31, 53–58, 2007.
  • [19] Subashini S, Arunachalam KD, Annamalai SK. Preclinical studies on the phytochemical, antimicrobial, and wound healing properties of indigofera aspalathoides leaves. J Pharm Res, 4, 3206–3211, 2011.
  • [20] McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem, 73, 73–84, 2001.
  • [21] Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal, 10, 178–182, 2002.
  • [22] Chen J, Gao K, Liu T, Zhao H, Wang J, Wu H, Liu B, Wang W. Aporphine alkaloids: A kind of alkaloids‘ extract source, chemical constitution and pharmacological actions in different botany. Asian J Chem, 25, 10015–10027, 2013.
  • [23] Kumar P, Selvi SS, Govindaraju M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci, 3, 495-5, 2013.
  • [24] Raut Rajesh W, Lakkakula Jaya R, Kolekar Niranjan S, Mendhulkar Vijay D, Kashid Sahebrao B. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci, 5, 117-122, 2009.
  • [25] Fayaz AM, Balaji K, Kalaichelvan P, Venkatesan R. Fungal based synthesis of silver nanoparticles an effect of temperature on the size of particles. Colloids Surf B, 74, 123-126, 2009.
  • [26] Kotakadi, VS, Gaddam SA, Venkata SK. New generation of bactericidal silver nanoparticles against different antibiotic resistant Escherichia coli strains. Appl Nanosci, 5, 847–855, 2015.
  • [27] Sadeghi B, Jamali M, Kia Sh, Amininia A, Ghafari S. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int J Nano Dim, 1, 119-124, 2010.
  • [28] Najmus-Saqib Q, Alam F, Ahmad M. Antimicrobial and cytotoxicity activities of the medicinal plant Primula macrophylla. J Enzyme Inhib Med Chem, 24, 697–701, 2009.
  • [29] Buruk K, Sökmen A, Aydın F, Ertürk M. Antimicrobial activity of some endemic plants growing in the Eastern Black Sea Region, Turkey. Fitoterapia, 77, 388-391, 2006.
  • [30] Orhan DD, Ozcelik B, Hosbas S, Vural M. Assessment of antioxidant, antibacterial, antimycobacterial, and antifungal activities of some plants used as folk remedies in Turkey against dermatophytes and yeast-like fungi. Turk J Biol, 36, 672–86, 2012.
  • [31] Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A, 339, 134-139, 2009.
  • [32] Khandelwal N, Singh A, Jain D, Upadhyay MK, Verma HN. Green synthesis of silver nanoparticles using Argemone maxicana extract and evaluation of their activity. Dig J Nanomater Biostruct, 5, 483-489, 2010.
  • [33] Devanesan S, AlSalhi MS, Balaji RV, Ranjitsingh AJA, Ahamed A, Alfuraydi AA, AlQahtani FY, Aleanizy FS, Othman AH. Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract. Nanoscale Res Lett, 13, 315-325, 2018.
  • [34] Ajitha B, Reddy YA, Reddy PS. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their in born antimicrobial activity. Spectrochim Acta Part A, 121, 164-172, 2014.
  • [35] Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.). Front Mol Biosci, 17, 14, 2017.
  • [36] Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc, 5, 326–332, 2015.
  • [37] Poracova J, Zahatnanska M, Blascakova M. The contents of therapeutically effective compounds of cowslip (Primula veris L.) from various stands of Levocske Mountains in eastern Slovakia. Planta Med, 75, PD45, 2009.
  • [38] Tünde J, Marian E, Vicas L, Oana N, Pallag A. Bioactive compound and antioxidant capacity of Primula veris L. flower extracts. Analele Universităţii din Oradea, Fascicula: Ecotoxicologie, Zootehnieşi Tehnologii de Industrie Alimentară XIV B, 235-242, 2015.
  • [39] Jaberian H, Piri K, Nazari J. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chem, 136, 237–244, 2013.
  • [40] Demir S, Turan İ, Aliyazıcıoğlu Y. Antioxidant Properties of Primula vulgaris Flower Extract and Its Cytotoxic Effect on Human Cancer Cell Lines. KSÜ Tarım ve Doğa Derg, 22, 19-25, 2019.
  • [41] Bektas T, Sokmen, M, Akpulat HA, Sokmen A. In-vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem, 92, 89–92, 2005.
  • [42] Liguori, I,, Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G.,Testa, G., Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging, 13, 757–772, 2018.
  • [43] Li, S, Chen G, Zhang C, M, Wu S, Liu Q. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Well, 3, 110-116, 2014.
  • [44] Dağlıoğlu, Y., Yılmaz Öztürk, B. A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change.Rend. Fis. Acc. Lincei, 30, 611–621, 2019.

Primula vulgaris'ten Sentezlenen Gümüş Nanopartiküllerin Antimikrobiyal ve Antioksidan Potansiyeli

Year 2022, Volume: 10 Issue: 2, 1013 - 1022, 26.12.2022
https://doi.org/10.18586/msufbd.1126542

Abstract

Bu çalışmada, Primula vulgaris'in (P. vulgaris subsp. vulgaris) sulu yaprak, çiçek ve kök ekstreleri kullanılarak gümüş nanopartiküllerin biyosentezi ve in vitro fitokimyasal bileşimi, antibakteriyel ve antioksidan aktiviteleri araştırılmıştır. Sentezlenen gümüş nanoparçacıklar (AgNP'ler), renk dönüşümü ve ultraviyole-görünür (UV-görünür) spektrofotometrisi ile doğrulandı. Koyu kahverengi rengin görünümü ve 440 nm'de bir UV absorpsiyon spektrum aralığı, sentezlenen gümüş nanoparçacıkları doğruladı. P. vulgaris’in yaprak ekstraktından sentezlenen gümüş nanopartiküldeki en fazla antimikrobiyal etki; S. aureus 25±1, S. epidermidis 20±1, P. aeruginosa 21±1, A. hydrophila 21±1, C. albicans 25±1, C. tropicalis 25±1, C. parapsilosis 22±1 ve C.glabrata 20±1 mm zon çapı ile belirlendi.P. vulgaris yaprak sulu ekstraktın en fazla antimikrobiyal etki; S. aureus 20±1, S. epidermidis 18±1, A.hydrophila 15±1, P. aeruginosa 12±2, C. albicans 18±1, C. glabrata 18±1, C.tropicalis15±2 ve C. parapsilosis 15±2 mm zon çapı ortaya konmuştur. Fitokimyasal taramaya göre P. vulgaris'in çiçek kısmında sentezlenen gümüş nanopartiküllerde flavonoidler, terpenoidler, protein ve karbonhidratların varlığı daha yüksek bulunmuştur. P. vulgaris kök ekstraktlarında saponinler tespit edilirken, yaprak ekstraktında tanen ve protein tespit edildi. P. vulgaris yaprak ekstraktından sentezlenen gümüş nanopartiküllerin antimikrobiyal aktivitesinin, P. vulgaris yaprak sulu ekstraktının antimikrobiyal aktivitesinden daha aktif olduğu bulundu. Çiçek, gümüş nanopartikülün en yüksek toplam fenolik ekstrakt içeriğine (29.08±0 mg GAE/g DW) sahipken, yaprak ve kök, sırasıyla 9.06±0.5 ve 8.64±3.3 mg GAE/g DW ile en düşük toplam fenolik içeriğe sahipti.
Bitki sulu ekstraktları arasında en yüksek toplam fenolik ekstrakt içeriği çiçekte bulunurken (25.10±0.2 mg GAE/g DW), yaprak ve kök en düşük (sırasıyla 8.28±0.5 ve 5.20±0.0 mg GAE/g DW) bulundu. DPPH (1,1-Difenil-2-pikrilhidrazil) tahlili, serbest radikal süpürme aktivitesini değerlendirmek için kullanıldı. P. vulgaris çiçek özütü kullanılarak biyosentezlenen AgNP'lerin antioksidan aktivitesi %90,6 iken, P.vulgaris çiçek sulu özütleri %86.3'tür.
Buradan P. vulgaris çiçek ekstresi kullanılarak sentezlenen gümüş nanopartiküllerin farmakolojik olarak faydalı ilaçların hazırlanmasında faydalı olduğu sonucuna varılabilir.

Project Number

Proje No: SAG.A4.19.001

References

  • [1] Çi̇ftçi̇ H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Bioactive Nanoparticles Synthesized by Green Method BSJ Eng Sci, 4, 1-14, 2021.
  • [2] Kumar V, Yadav, SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol Biotechnol, 84, 151–157, 2009.
  • [3] Haverkamp RG, Marshall AT, Agterveld DV. Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanopart Res, 9, 697–700, 2007
  • [4] Dağlıoğlu Y, Öztürk B. Green Synthesis of Silver Nanoparticles Using Mandragora autumnalis; Its Characterization, Antioxidant and Antimicrobial Activities. Erzincan University Journal of Science and Technology, 14, 1039-1054, 2021.
  • [5] Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog, 22, 577–583, 2006.
  • [6] Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem, 13, 2638–2650, 2011.
  • [7] Ozkan MT, Aliyazicioglu R, Demir S, Misir S, Turan I, Yildirmis S, Aliyazicioglu Y. Phenolic characterisation and antioxidant activity of Primula vulgaris and its antigenotoxic effect on fibroblast cells. Jundishapur Na Pharm Prod, 12, e40073, 2017.
  • [8] Mostafa FA, Gamal MA, Sabrin IRM, Ehab ES. Antioxidant and anti-inflamatory activities of phenolic constituents from Primula elatior L. aerial part. Int J Pharmacogn Phytochemi Res, 6 ,74-78, 2014.
  • [9] Schmidt Lebuhn AN, de Vos JM, Keller B, Conti E. Phylogenetic analysis of Primula section Primula reveals rampant non-monophyly among morphologically distinct species. Mol. Phylogenet Evol, 65, 23-24, 2012.
  • [10] Jager AK, Gauguin B, Adsersen A, Gudiksen L. Screening of plants used in Danish folk medicine to treat epilepsy and convulsions. J. Ethnopharmacol, 105, 294–300, 2006.
  • [11] Yaylı N, Çelik G, Korkmaz B, Çoşkunçelebi K, Karaoğlu ŞA. Altitude variation in the composition of essential oils fatty acid methyl esters and antimicrobial activities of two subspecies of Primula vulgaris grown in Turkey. Nat Prod Commun, 11, 1505-1510, 2016.
  • [12] Majid A., Hassan S., Hussain W., Khan A., Hassan A., Khan, A., Khan T.M., Ahmad T., Rehman MU, Pakhtunkhwa K. In vitro Approaches of Primula vulgaris Leaves and Roots Extraction against Human Pathogenic Bacterial Strains. World Appl Sci J, 30, 575 -80, 2014.
  • [13] Basbülbül G, Ozmen A, Biyik HH, Sen O. Antimitotic and antibacterial effects of the Primula veris L. flower extracts. Caryologia, 61, 88-91, 2008.
  • [14] Aslam K, Nawchoo IA, Ganai BA. In Vitro Antioxidant, Antibacterial Activity and Phytochemical Studies of Primula Denticulata An Important Medicinal Plant of Kashmir Himalaya. Int J Pharmacol Res, 5, 49 -56, 2015.
  • [15] Demir N, Gungor AA, Nadaroglu H, Demir Y. The antioxidant and radical scavenging activities of Primrose (Primula vulgaris). Eur J Exp Biol, 4, 395 -401, 2014.
  • [16] Park HR, Park E, Rim R, Jeon KI, Hwang JH, Lee S. Antioxidant activity of extracts from Acanthopanax senticosus. Afr J Biotechnol, 5, 2388-2396, 2006.
  • [17] Magaldi S, Camero T, Susceptibilidad de Candida albicans in vitro‘ mediante los pozos de difusión. Boletın Venezolano de Infectologia, 7, 5-8, 1997.
  • [18] Parekh J, Chanda SV. In vitro antimicrobial activity and phytochemical analysis of some indian medicinal plants. Turk J Biol, 31, 53–58, 2007.
  • [19] Subashini S, Arunachalam KD, Annamalai SK. Preclinical studies on the phytochemical, antimicrobial, and wound healing properties of indigofera aspalathoides leaves. J Pharm Res, 4, 3206–3211, 2011.
  • [20] McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem, 73, 73–84, 2001.
  • [21] Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal, 10, 178–182, 2002.
  • [22] Chen J, Gao K, Liu T, Zhao H, Wang J, Wu H, Liu B, Wang W. Aporphine alkaloids: A kind of alkaloids‘ extract source, chemical constitution and pharmacological actions in different botany. Asian J Chem, 25, 10015–10027, 2013.
  • [23] Kumar P, Selvi SS, Govindaraju M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci, 3, 495-5, 2013.
  • [24] Raut Rajesh W, Lakkakula Jaya R, Kolekar Niranjan S, Mendhulkar Vijay D, Kashid Sahebrao B. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci, 5, 117-122, 2009.
  • [25] Fayaz AM, Balaji K, Kalaichelvan P, Venkatesan R. Fungal based synthesis of silver nanoparticles an effect of temperature on the size of particles. Colloids Surf B, 74, 123-126, 2009.
  • [26] Kotakadi, VS, Gaddam SA, Venkata SK. New generation of bactericidal silver nanoparticles against different antibiotic resistant Escherichia coli strains. Appl Nanosci, 5, 847–855, 2015.
  • [27] Sadeghi B, Jamali M, Kia Sh, Amininia A, Ghafari S. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int J Nano Dim, 1, 119-124, 2010.
  • [28] Najmus-Saqib Q, Alam F, Ahmad M. Antimicrobial and cytotoxicity activities of the medicinal plant Primula macrophylla. J Enzyme Inhib Med Chem, 24, 697–701, 2009.
  • [29] Buruk K, Sökmen A, Aydın F, Ertürk M. Antimicrobial activity of some endemic plants growing in the Eastern Black Sea Region, Turkey. Fitoterapia, 77, 388-391, 2006.
  • [30] Orhan DD, Ozcelik B, Hosbas S, Vural M. Assessment of antioxidant, antibacterial, antimycobacterial, and antifungal activities of some plants used as folk remedies in Turkey against dermatophytes and yeast-like fungi. Turk J Biol, 36, 672–86, 2012.
  • [31] Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A, 339, 134-139, 2009.
  • [32] Khandelwal N, Singh A, Jain D, Upadhyay MK, Verma HN. Green synthesis of silver nanoparticles using Argemone maxicana extract and evaluation of their activity. Dig J Nanomater Biostruct, 5, 483-489, 2010.
  • [33] Devanesan S, AlSalhi MS, Balaji RV, Ranjitsingh AJA, Ahamed A, Alfuraydi AA, AlQahtani FY, Aleanizy FS, Othman AH. Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract. Nanoscale Res Lett, 13, 315-325, 2018.
  • [34] Ajitha B, Reddy YA, Reddy PS. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their in born antimicrobial activity. Spectrochim Acta Part A, 121, 164-172, 2014.
  • [35] Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.). Front Mol Biosci, 17, 14, 2017.
  • [36] Sadeghi B, Rostami A, Momeni SS. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc, 5, 326–332, 2015.
  • [37] Poracova J, Zahatnanska M, Blascakova M. The contents of therapeutically effective compounds of cowslip (Primula veris L.) from various stands of Levocske Mountains in eastern Slovakia. Planta Med, 75, PD45, 2009.
  • [38] Tünde J, Marian E, Vicas L, Oana N, Pallag A. Bioactive compound and antioxidant capacity of Primula veris L. flower extracts. Analele Universităţii din Oradea, Fascicula: Ecotoxicologie, Zootehnieşi Tehnologii de Industrie Alimentară XIV B, 235-242, 2015.
  • [39] Jaberian H, Piri K, Nazari J. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chem, 136, 237–244, 2013.
  • [40] Demir S, Turan İ, Aliyazıcıoğlu Y. Antioxidant Properties of Primula vulgaris Flower Extract and Its Cytotoxic Effect on Human Cancer Cell Lines. KSÜ Tarım ve Doğa Derg, 22, 19-25, 2019.
  • [41] Bektas T, Sokmen, M, Akpulat HA, Sokmen A. In-vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem, 92, 89–92, 2005.
  • [42] Liguori, I,, Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G.,Testa, G., Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging, 13, 757–772, 2018.
  • [43] Li, S, Chen G, Zhang C, M, Wu S, Liu Q. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci Hum Well, 3, 110-116, 2014.
  • [44] Dağlıoğlu, Y., Yılmaz Öztürk, B. A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change.Rend. Fis. Acc. Lincei, 30, 611–621, 2019.
There are 44 citations in total.

Details

Primary Language English
Subjects Conservation and Biodiversity
Journal Section Research Article
Authors

Belgin Erdem 0000-0001-9108-5561

Harun Çiftçi 0000-0002-3210-5566

Yunus Şahin 0000-0001-8026-8119

Project Number Proje No: SAG.A4.19.001
Publication Date December 26, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Erdem, B., Çiftçi, H., & Şahin, Y. (2022). Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 10(2), 1013-1022. https://doi.org/10.18586/msufbd.1126542
AMA Erdem B, Çiftçi H, Şahin Y. Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris. MAUN Fen Bil. Dergi. December 2022;10(2):1013-1022. doi:10.18586/msufbd.1126542
Chicago Erdem, Belgin, Harun Çiftçi, and Yunus Şahin. “Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula Vulgaris”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 10, no. 2 (December 2022): 1013-22. https://doi.org/10.18586/msufbd.1126542.
EndNote Erdem B, Çiftçi H, Şahin Y (December 1, 2022) Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 10 2 1013–1022.
IEEE B. Erdem, H. Çiftçi, and Y. Şahin, “Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris”, MAUN Fen Bil. Dergi., vol. 10, no. 2, pp. 1013–1022, 2022, doi: 10.18586/msufbd.1126542.
ISNAD Erdem, Belgin et al. “Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula Vulgaris”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 10/2 (December 2022), 1013-1022. https://doi.org/10.18586/msufbd.1126542.
JAMA Erdem B, Çiftçi H, Şahin Y. Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris. MAUN Fen Bil. Dergi. 2022;10:1013–1022.
MLA Erdem, Belgin et al. “Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula Vulgaris”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, 2022, pp. 1013-22, doi:10.18586/msufbd.1126542.
Vancouver Erdem B, Çiftçi H, Şahin Y. Antimicrobial and Antioxidant Potential of Silver Nanoparticles Synthesized from Primula vulgaris. MAUN Fen Bil. Dergi. 2022;10(2):1013-22.