Research Article
BibTex RIS Cite

Doğal polimer destekli bir titanyum nanokompozit elektrodun lizin amino aside karşı elektrokimyasal duyarlılığı, seçiciliği ve duyusal özellikleri

Year 2023, Volume: 11 Issue: 1, 28 - 32, 30.06.2023
https://doi.org/10.18586/msufbd.1268440

Abstract

Bu çalışmada kitosan (Chit) destekli titanyum (Ti) nanoparçacıkları (Ti@Chit NPs) kimyasal yöntemle sentezlendi. Ti@Chit NP'leri taramalı elektron mikroskobu (SEM) ve atomik kuvvet mikroskobu (AFM) sonuçlarına göre sırasıyla 7,275 ± 2,15 nm ve 18,629 nm olarak hesaplanmıştır. Sentezlenen NP'ler elektroda modifiye edildi ve lizin amino aside karşı bir duyarlılık çalışması yapıldı. Ti@Chit elektrodunun amino asit lizine karşı katalitik bir performansa sahip olduğu belirlenmiştir. Tespit sınırı (LOD) değerinin ortalama 0,0041 µM olduğu tahmin edilmektedir.

Supporting Institution

SELÇUK ÜNİVERSİTESİ ILTEK

References

  • [1] Ajandouz E.H., Puigserver A. Nonenzymatic Browning Reaction of Essential Amino Acids:  Effect of pH on Caramelization and Maillard Reaction Kinetics, J. Agric. Food Chem. 47:5 1786–1793, 1999.
  • [2] Hawkins C.L., Davies M.J. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation, Biochem. J., 332:3 617–625, 1998.
  • [3] Kraus L.M., Kraus J. Carbamoylation of amino acids and proteins in uremia, Kidney Int., 59:78 S102–S107, 2001.
  • [4] Casettari L., Vllasaliu D. Lam J.K.W. Soliman M., Illum L. Biomedical applications of amino acid-modified chitosans: A review, Biomaterials, 33:30 7565–7583, 2012.
  • [5] Obst M., Steinbüchel A. Microbial Degradation of Poly(amino acid)s, Biomacromolecules, 5:4 1166–1176, 2004.
  • [6] Friedman M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences, J. Agric. Food Chem. 52:3 385–406, 2004.
  • [7] Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine., 16:1 7–21, 2013.
  • [8] Hayamizu K. Oshima I. Nakano M. Comprehensive Safety Assessment of l-Lysine Supplementation from Clinical Studies: A Systematic Review, J. Nutr., 150 2561S-2569S, Oct. 2020.
  • [9] Vaghefi S.B., Makdani D.D., Mickelsen O. Lysine supplementation of wheat proteins A review, Am. J. Clin. Nutr. 27:11 1231–1246, 1974.
  • [10] Gholivand M.B., Shamsipur M., Amini N. Nonenzymatic L-lysine amino acid detection using titanium oxide nanoparticles/multi wall carbon nanotube composite electrodes, Electrochim. Acta, 123 569–575, 2014.
  • [11] Sahin O.G., Gulce H., Gulce A. Polyvinylferrocenium based platinum electrodeposited amperometric biosensors for lysine detection, J. Electroanal. Chem. 690 1–7, 2013.
  • [12] Paolesse R., Nardis S., Monti, Stefanelli D.M., Natale Di C. Porphyrinoids for Chemical Sensor Applications, Chemical Reviews, 22 2517–2583, 2017.
  • [13] Hulanicki A. Glab S. Ingman F. Chemical sensors definitions and classification, Pure Appl. Chem. 63:9 1247–1250, 1991.
  • [14] Chande S., Bergwitz C. Role of phosphate sensing in bone and mineral metabolism, Nat. Rev. Endocrinol. 14:11 637–655, 2018.
  • [15] Kocak N., Sahin M., Kücükkolbasi S., Erdogan Z.O. Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor, Int. J. Biol. Macromol. 51:5 1159–1166, 2012.
  • [16] Raziq A., Kidakova A ., Boroznjak R., Reut J., Öpik A., Syritski V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen, Biosens. Bioelectron. 78 113029, 2021.
  • [17] Hocini A., Ben salah H., Khedrouche D., Melouki N. A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure, Opt. Quantum Electron. 52:7 1–10, 2020.
  • [18] Li Q., Li Z., Zhang Q., Zheng L., Yan W., Liang X., Gu L., Chen C., Wang D., Peng Q., Li Y. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution, Nano Res. 14: 5 1435–1442, 2021.
  • [19] Kimuam K., Rodthongkum N., Ngamrojanavanich N., Chailapakul O., Ruecha N. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor, Microchem. J., 155 104744, 2020.
  • [20] Agarwal H ., Nakara A., Shanmugam V. K., “Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review,” Biomedicine and Pharmacotherapy, 109. SAS, 2561–2572, 2019.
  • [21] Fan D., Zhai Q., Zhou W., Zhu X., Wang E., Dong S. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation,” Biosens. Bioelectron. 85 771–776, 2016.
  • [22] Han D., Zhao M., Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level, J. Alloys Compd., 815 152406, 2020.
  • [23] Rahmati N., Rahimnejad M., Pourali S.M., Muallah S.K. Bismuth Oxychloride Nanoparticles: Deep Eutectic Solvent Assisted Synthesis and Application in an Electrochemical Nickel Sensor, ChemistrySelect, 7:46 e202202430, 2022.
  • [24] Paul J., Philip J. Inter-digital capacitive ethanol sensor coated with cobalt ferrite nano composite as gas sensing material, Mater. Today Proc. 25 148–150, 2020.
  • [25] Alam A.U., Deen M.J. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes, Anal. Chem. 92:7 5532–5539, 2020.
  • [26] Zhang Z., Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energy Convers. Manag., 47:3 303–310, 2006.
  • [27] Shukla,S.K., Mishra A.K., Arotiba O.A., Mamba B. B. Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol. 59 46–58, 2013.
  • [28] Cheng M., Gong K., Li J., GongY ., Zhao N., Zhang X. Surface Modification and Characterization of Chitosan Film Blended with Poly-L-Lysine, 19:1 59–75, 2004.
  • [29] Abhilash M., Thomas D. Biopolymers for Biocomposites and Chemical Sensor Applications, in Biopolymer Composites in Electronics, Elsevier Inc., pp. 405–435, 2017.
  • [30] Rinaudo M. Chitin and chitosan: Properties and applications,” Progress in Polymer Science (Oxford), 31:7 603–632, 2006.
  • [31] Yilmaz M.D. Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics, Carbohydr. Polym. 146 174–180, 2016.
  • [32] Adlim M., Abu Bakar M., Liew K.Y., Ismail J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity, J. Mol. Catal. A Chem. 212:1–2 141–149, 2004.
  • [33] Yu X., Jing Y., Xia W. Antifungal properties of chitosan-cobalt(II) complex and its potential on the suppression of damping-off in cucumber seedlings, Asia-Pacific J. Chem. Eng. 11:5 714–720, 2016.
  • [34] Abdelkader H., Fathalla Z. Investigation into the Emerging Role of the Basic Amino Acid L-Lysine in Enhancing Solubility and Permeability of BCS Class II and BCS Class IV Drugs, Pharm. Res. 35:8 1–18, 2018.
  • [35] Cetin A. Korkmaz A. Erdoğan E. Kösemen A. A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films, Mater. Chem. Phys. 222 37–44, 2019.
  • [36] Cetin A. Korkmaz A. Synthesis, optical and morphological properties of novel pyrazole-based oligoamide film, Opt. Mater. 85 79–85, 2018.
  • [37] Korkmaz A., Cetin A., Kaya E., Erdoğan E .Novel polySchiff base containing naphthyl: synthesis, characterization, optical properties and surface morphology, J. Polym. Res. 25:8 1–8, 2018.
  • [38] Wokovich A., Tyner K., Doub W., Sadrieh N., Buhse L.F. Particle size determination of sunscreens formulated with various forms of titanium dioxide, 35:10 1180–1189, 2009.
  • [39] Asl S.D., Sadrnezhaad S.K. Growth of TiO2 Branched Nanorod Arrays on Transparent Conducting Substrate, 17, 2023.
  • [40] Wang J., Zhang S., Zhang, Y. Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode, Anal. Biochem. 396:2 304–309, 2010.
  • [41] Zhang D., Chen X., Ma W., Yang T. Direct electrochemistry of glucose oxidase based on one step electrodeposition of reduced graphene oxide incorporating polymerized l-lysine and its application in glucose sensing, Mater. Sci. Eng. C, 104 109880, 2019

Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid

Year 2023, Volume: 11 Issue: 1, 28 - 32, 30.06.2023
https://doi.org/10.18586/msufbd.1268440

Abstract

In this study, chitosan (Chit) supported titanium (Ti) nanoparticles (Ti@Chit NPs) were synthesized by chemical method. Ti@Chit NPs were calculated to be 7.275 ± 2.15 nm and 18.629 nm according to scanning electron microscopy (SEM) and atomic force microscopy (AFM) results, respectively. The synthesized NPs were modified to the electrode and a sensitivity study was carried out against lysine amino acid. It has been determined that the Ti@Chit electrode has a catalytic performance against the amino acid lysine. The limit of detection (LOD) value is estimated to average 0.0041 µM.

References

  • [1] Ajandouz E.H., Puigserver A. Nonenzymatic Browning Reaction of Essential Amino Acids:  Effect of pH on Caramelization and Maillard Reaction Kinetics, J. Agric. Food Chem. 47:5 1786–1793, 1999.
  • [2] Hawkins C.L., Davies M.J. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation, Biochem. J., 332:3 617–625, 1998.
  • [3] Kraus L.M., Kraus J. Carbamoylation of amino acids and proteins in uremia, Kidney Int., 59:78 S102–S107, 2001.
  • [4] Casettari L., Vllasaliu D. Lam J.K.W. Soliman M., Illum L. Biomedical applications of amino acid-modified chitosans: A review, Biomaterials, 33:30 7565–7583, 2012.
  • [5] Obst M., Steinbüchel A. Microbial Degradation of Poly(amino acid)s, Biomacromolecules, 5:4 1166–1176, 2004.
  • [6] Friedman M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences, J. Agric. Food Chem. 52:3 385–406, 2004.
  • [7] Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine., 16:1 7–21, 2013.
  • [8] Hayamizu K. Oshima I. Nakano M. Comprehensive Safety Assessment of l-Lysine Supplementation from Clinical Studies: A Systematic Review, J. Nutr., 150 2561S-2569S, Oct. 2020.
  • [9] Vaghefi S.B., Makdani D.D., Mickelsen O. Lysine supplementation of wheat proteins A review, Am. J. Clin. Nutr. 27:11 1231–1246, 1974.
  • [10] Gholivand M.B., Shamsipur M., Amini N. Nonenzymatic L-lysine amino acid detection using titanium oxide nanoparticles/multi wall carbon nanotube composite electrodes, Electrochim. Acta, 123 569–575, 2014.
  • [11] Sahin O.G., Gulce H., Gulce A. Polyvinylferrocenium based platinum electrodeposited amperometric biosensors for lysine detection, J. Electroanal. Chem. 690 1–7, 2013.
  • [12] Paolesse R., Nardis S., Monti, Stefanelli D.M., Natale Di C. Porphyrinoids for Chemical Sensor Applications, Chemical Reviews, 22 2517–2583, 2017.
  • [13] Hulanicki A. Glab S. Ingman F. Chemical sensors definitions and classification, Pure Appl. Chem. 63:9 1247–1250, 1991.
  • [14] Chande S., Bergwitz C. Role of phosphate sensing in bone and mineral metabolism, Nat. Rev. Endocrinol. 14:11 637–655, 2018.
  • [15] Kocak N., Sahin M., Kücükkolbasi S., Erdogan Z.O. Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor, Int. J. Biol. Macromol. 51:5 1159–1166, 2012.
  • [16] Raziq A., Kidakova A ., Boroznjak R., Reut J., Öpik A., Syritski V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen, Biosens. Bioelectron. 78 113029, 2021.
  • [17] Hocini A., Ben salah H., Khedrouche D., Melouki N. A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure, Opt. Quantum Electron. 52:7 1–10, 2020.
  • [18] Li Q., Li Z., Zhang Q., Zheng L., Yan W., Liang X., Gu L., Chen C., Wang D., Peng Q., Li Y. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution, Nano Res. 14: 5 1435–1442, 2021.
  • [19] Kimuam K., Rodthongkum N., Ngamrojanavanich N., Chailapakul O., Ruecha N. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor, Microchem. J., 155 104744, 2020.
  • [20] Agarwal H ., Nakara A., Shanmugam V. K., “Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review,” Biomedicine and Pharmacotherapy, 109. SAS, 2561–2572, 2019.
  • [21] Fan D., Zhai Q., Zhou W., Zhu X., Wang E., Dong S. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation,” Biosens. Bioelectron. 85 771–776, 2016.
  • [22] Han D., Zhao M., Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level, J. Alloys Compd., 815 152406, 2020.
  • [23] Rahmati N., Rahimnejad M., Pourali S.M., Muallah S.K. Bismuth Oxychloride Nanoparticles: Deep Eutectic Solvent Assisted Synthesis and Application in an Electrochemical Nickel Sensor, ChemistrySelect, 7:46 e202202430, 2022.
  • [24] Paul J., Philip J. Inter-digital capacitive ethanol sensor coated with cobalt ferrite nano composite as gas sensing material, Mater. Today Proc. 25 148–150, 2020.
  • [25] Alam A.U., Deen M.J. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes, Anal. Chem. 92:7 5532–5539, 2020.
  • [26] Zhang Z., Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energy Convers. Manag., 47:3 303–310, 2006.
  • [27] Shukla,S.K., Mishra A.K., Arotiba O.A., Mamba B. B. Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol. 59 46–58, 2013.
  • [28] Cheng M., Gong K., Li J., GongY ., Zhao N., Zhang X. Surface Modification and Characterization of Chitosan Film Blended with Poly-L-Lysine, 19:1 59–75, 2004.
  • [29] Abhilash M., Thomas D. Biopolymers for Biocomposites and Chemical Sensor Applications, in Biopolymer Composites in Electronics, Elsevier Inc., pp. 405–435, 2017.
  • [30] Rinaudo M. Chitin and chitosan: Properties and applications,” Progress in Polymer Science (Oxford), 31:7 603–632, 2006.
  • [31] Yilmaz M.D. Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics, Carbohydr. Polym. 146 174–180, 2016.
  • [32] Adlim M., Abu Bakar M., Liew K.Y., Ismail J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity, J. Mol. Catal. A Chem. 212:1–2 141–149, 2004.
  • [33] Yu X., Jing Y., Xia W. Antifungal properties of chitosan-cobalt(II) complex and its potential on the suppression of damping-off in cucumber seedlings, Asia-Pacific J. Chem. Eng. 11:5 714–720, 2016.
  • [34] Abdelkader H., Fathalla Z. Investigation into the Emerging Role of the Basic Amino Acid L-Lysine in Enhancing Solubility and Permeability of BCS Class II and BCS Class IV Drugs, Pharm. Res. 35:8 1–18, 2018.
  • [35] Cetin A. Korkmaz A. Erdoğan E. Kösemen A. A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films, Mater. Chem. Phys. 222 37–44, 2019.
  • [36] Cetin A. Korkmaz A. Synthesis, optical and morphological properties of novel pyrazole-based oligoamide film, Opt. Mater. 85 79–85, 2018.
  • [37] Korkmaz A., Cetin A., Kaya E., Erdoğan E .Novel polySchiff base containing naphthyl: synthesis, characterization, optical properties and surface morphology, J. Polym. Res. 25:8 1–8, 2018.
  • [38] Wokovich A., Tyner K., Doub W., Sadrieh N., Buhse L.F. Particle size determination of sunscreens formulated with various forms of titanium dioxide, 35:10 1180–1189, 2009.
  • [39] Asl S.D., Sadrnezhaad S.K. Growth of TiO2 Branched Nanorod Arrays on Transparent Conducting Substrate, 17, 2023.
  • [40] Wang J., Zhang S., Zhang, Y. Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode, Anal. Biochem. 396:2 304–309, 2010.
  • [41] Zhang D., Chen X., Ma W., Yang T. Direct electrochemistry of glucose oxidase based on one step electrodeposition of reduced graphene oxide incorporating polymerized l-lysine and its application in glucose sensing, Mater. Sci. Eng. C, 104 109880, 2019
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Elif Esra Altuner 0000-0001-7663-6898

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Altuner, E. E. (2023). Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid. Mus Alparslan University Journal of Science, 11(1), 28-32. https://doi.org/10.18586/msufbd.1268440
AMA Altuner EE. Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid. MAUN Fen Bil. Dergi. June 2023;11(1):28-32. doi:10.18586/msufbd.1268440
Chicago Altuner, Elif Esra. “Electrochemical Sensitivity, Selectivity, and Sensory Properties of a Natural Polymer-Supported Titanium Nanocomposite Electrode towards Lysine Amino Acid”. Mus Alparslan University Journal of Science 11, no. 1 (June 2023): 28-32. https://doi.org/10.18586/msufbd.1268440.
EndNote Altuner EE (June 1, 2023) Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid. Mus Alparslan University Journal of Science 11 1 28–32.
IEEE E. E. Altuner, “Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid”, MAUN Fen Bil. Dergi., vol. 11, no. 1, pp. 28–32, 2023, doi: 10.18586/msufbd.1268440.
ISNAD Altuner, Elif Esra. “Electrochemical Sensitivity, Selectivity, and Sensory Properties of a Natural Polymer-Supported Titanium Nanocomposite Electrode towards Lysine Amino Acid”. Mus Alparslan University Journal of Science 11/1 (June 2023), 28-32. https://doi.org/10.18586/msufbd.1268440.
JAMA Altuner EE. Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid. MAUN Fen Bil. Dergi. 2023;11:28–32.
MLA Altuner, Elif Esra. “Electrochemical Sensitivity, Selectivity, and Sensory Properties of a Natural Polymer-Supported Titanium Nanocomposite Electrode towards Lysine Amino Acid”. Mus Alparslan University Journal of Science, vol. 11, no. 1, 2023, pp. 28-32, doi:10.18586/msufbd.1268440.
Vancouver Altuner EE. Electrochemical sensitivity, selectivity, and sensory properties of a natural polymer-supported titanium nanocomposite electrode towards lysine amino acid. MAUN Fen Bil. Dergi. 2023;11(1):28-32.