Research Article
BibTex RIS Cite

Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018

Year 2023, Volume: 11 Issue: 2, 55 - 64, 31.12.2023
https://doi.org/10.18586/msufbd.1353252

Abstract

In this study, the electron transport process resulting from electromagnetic drift between two magnetic conjugate pairs over the African region during the August 25-26 2018 geomagnetic storm was investigated. The effects of geomagnetic conditions presented with Dst index and IMF Bz values on Total Electron Content (TEC) values at conjugate stations were compared separately for stormy and quiet periods. During the storm period, the effect of TEC values at stations in the northern hemisphere (Haifa and Djibouti) on the TEC values at stations in the southern hemisphere (Ambalavao and Malindi) is greater than the effect of TEC values in the southern hemisphere on TEC values in the northern hemisphere. According to this result, it can be said that the south-directed electromagnetic convection was more than the north-directed convection in the examined dates. When the coefficients are examined, it can be said that the interaction is more in the magnetic conjugate pair that is closer to the equator during the storm period, and the interaction is more in the magnetic conjugate pair that is far from the equator during the silent period. Considering the coefficients calculated for Dst and IMF Bz, it is seen that the TEC values are very small compared to their coefficients. From this it can be concluded that the effect of Dst and IMF Bz is much smaller than the effect of TEC values at a station on TEC values at its magnetic conjugates.

References

  • [1] Scolini, C., Chané, E., Temmer, M., Kilpua, E.K.J., Dissauer, K., Veronig, A.M., Palmerio, E., Pomoell, J., Dumbović, M., Guo, J., Rodriguez, L. and Poedts, S. CME–CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. The Astrophysical Journal Supplement Series. 247, 1, 21, 2020.
  • [2] Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S. and Zhukov, A.N. Solar and interplanetary sources of major geomagnetic storms (Dst ≤-100 nT) during 1996–2005. Journal of Geophysical Research: Space Physics. 112, A10, 2007.
  • [3] Gosling, J.T. Coronal Mass Ejections: An Overview. Geophysical Monograph Series. N. Crooker, J.A. Joselyn, and J. Feynman, eds. American Geophysical Union. 9–16, 2013.
  • [4] Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G. and Russell, C.T. Multipoint ICME encounters: Pre-STEREO and STEREO observations. Journal of Atmospheric and Solar-Terrestrial Physics. 73, 10, 1228–1241, 2011.
  • [5] Cherniak, I. and Zakharenkova, I. Large‐Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm. Space Weather. 16, 9, 1377–1395, 2018.
  • [6] Blagoveshchensky, D.V. and Sergeeva, M.A. Ionospheric parameters in the European sector during the magnetic storm of August 25–26, 2018. Advances in Space Research. 65, 1, 11–18, 2020.
  • [7] Yang, Y. ‐Y., Zhima, Z. ‐R., Shen, X. ‐H., Chu, W., Huang, J. ‐P., Wang, Q., Yan, R., Xu, S., Lu, H. ‐X. and Liu, D. ‐P. The First Intense Geomagnetic Storm Event Recorded by the China Seismo‐Electromagnetic Satellite. Space Weather. 18, 1, 2020.
  • [8] Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S. and Zhukov, A.N. Solar and interplanetary sources of major geomagnetic storms (Dst ≤-100 nT) during 1996–2005. Journal of Geophysical Research: Space Physics. 112, A10, 2007.
  • [9] Richmond, A. D., Lu, G. Upper-atmospheric effects of magnetic storms: a brief tutorial. Journal of Atmospheric and Solar-Terrestrial Physics. 62, 1115–1127, 2000.
  • [10] Arowolo, O.A., Akala, A.O. and Oyeyemi, E.O. Interplanetary Origins of Some Intense Geomagnetic Storms During Solar Cycle 24 and the Responses of African Equatorial/Low‐Latitude Ionosphere to Them. Journal of Geophysical Research: Space Physics. 126, 2, 2021.
  • [11] Abdu, M.A. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Solar-Terrestrial Physics. 75–76, 2012.
  • [12] Amaechi, P.O., Oyeyemi, E.O. and Akala, A.O. Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region. Advances in Space Research. 61, 8, 2074–2090, 2018.
  • [13] Valladares, C.E., Sheehan, R., Basu, S., Kuenzler, H. and Espinoza, J. The multi-instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal drifts. Journal of Geophysical Research: Space Physics. 101, A12, 26839–26850, 1996.
  • [14] Ansari, K., Panda, S.K. and Jamjareegulgarn, P. Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period. Acta Astronautica. 169, 216–223, 2020.
  • [15] Kelley, M.C. and Heelis, R.A. The earth’s ionosphere: plasma physics and electrodynamics. Academic Press, 1989.
  • [16] Takahashi, H., Essien, P., A. O. B. Figueiredo, C., M. Wrasse, C., Barros, D., A. Abdu, M., Otsuka, Y., Shiokawa, K., Li, G., Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan, and Institute of Geology and Geophysics, 5, 5, 1–10, 2021.
  • [17] Appleton, E.V. Two Anomalies in the Ionosphere. Nature. 157, 3995, 691–691. 1946.
  • [18] Li, M. and Parrot, M. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Advances in Space Research. 61, 3, 974–984, 2018.
  • [19] Sergeenko, N.P. Irregular Phenomena in Magnetically Conjugate Regions of the F2 Layer of the Ionosphere. Geomagnetism and Aeronomy. 58, 6, 823–830, 2018.
  • [20] Hanson, W.B. Electron temperatures in the upper atmosphere. Space Research. 5, 282–302, 1963.
  • [21] Bittencourt, J.A. and Sahai, Y. F-region neutral winds from ionosonde measurements of hmF2 at low latitude magnetic conjugate regions. Journal of Atmospheric and Terrestrial Physics. 40, 6, 669–676, 1978.
  • [22] Campbell, W. H., Matsushita, S. World maps of conjugate coordinates and L contours. Journal of Geophysical Research. 72, 3518–3521, 1967.
  • [23] Gulyaeva, T.L., Arikan, F., Stanislawska, I. and Poustovalova, L.V. Symmetry and asymmetry of ionospheric weather at magnetic conjugate points for two midlatitude observatories. Advances in Space Research. 52, 10, 1837–1844, 2013.
  • [24] Le, H., Liu, L., Yue, X. and Wan, W. The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse. Annales Geophysicae. 27, 1, 179–184, 2009.
  • [25] Oguti, T. Conjugate point problems. Space Science Reviews. 9, 6, 745–804, 1969.
  • [26] Timocin, E., Unal, I., Tulunay, Y. and Goker, U.D. The effect of geomagnetic activity changes on the ionospheric critical frequencies (foF2) at magnetic conjugate points. Advances in Space Research. 62, 4, 821–828, 2018.
  • [27] Unal, I. The Comparison of Responses to Geomagnetic Activity Changes of foF2 Predicted by IRI with Observations at Magnetic Conjugate Points for Middle and High Latitudes. Sakarya University Journal of Science. 619–625, 2020.
  • [28] Wescott, E.M. Magnetoconjugate phenomena. Space Science Reviews. 5, 507–561, 1966.
  • [29] Dabbakuti, J.R.K.K., Yarrakula, M., Panda, S.K., Jamjareegulgarn, P. and Haq, M.A. Total electron content prediction using singular spectrum analysis and autoregressive moving average approach. Astrophysics and Space Science. 367, 1, 8, 2022.
  • [30] Gordiyenko, G.I., Maltseva, O.A., Arikan, F. and Yakovets, A.F. An evaluation of the IRI-Plas-TEC for winter anomaly along the mid-latitude sector based on GIM-TEC and foF2 values. Advances in Space Research. 64, 10, 2046–2063, 2019.
  • [31] Shubin, V.N. and Gulyaeva, T.L. Global mapping of total electron content from GNSS observations for updating IRI-Plas model. Advances in Space Research. 69, 1, 168–175, 2022.
  • [32] Siddiqui, T.A., Yamazaki, Y., Stolle, C., Maute, A., Laštovička, J., Edemskiy, I.K., Mošna, Z. and Sivakandan, M. Understanding the Total Electron Content Variability Over Europe During 2009 and 2019 SSWs. Journal of Geophysical Research: Space Physics. 126, 9, 2021.
  • [33] Arikan, F. Regularized estimation of vertical total electron content from Global Positioning System data. Journal of Geophysical Research. 108, A12, 1469, 2003.
  • [34] Nayir, H., Arikan, F., Arikan, O. and Erol, C.B. Total Electron Content Estimation with Reg-Est. Journal of Geophysical Research: Space Physics. 112, A11, 2007.
  • [35] Sezen, U., Arikan, F., Arikan, O., Ugurlu, O. and Sadeghimorad, A. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather. 11, 5, 297–305, 2013.
  • [36] Lissa, D., Srinivasu, V.K.D., Prasad, D.S.V.V.D. and Niranjan, K. Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80° E and 120° E longitudes in the Asian sector. Advances in Space Research. 66, 6, 1427–1440, 2020.
  • [37] Mansilla, G.A. and Zossi, M.M. Ionospheric response to the 26 August 2018 geomagnetic storm along 280° E and 316° E in the South American sector. Advances in Space Research. 69, 1, 48–58, 2022.
  • [38] Jenan, R., Dammalage, T.L. and Panda, S.K. Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronautica. 180, 575–587, 2021.
  • [39] Sharma, S.K., Singh, A.K., Panda, S.K. and Ahmed, S.S. The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on St. Patrick’s Day storm. Astrophysics and Space Science. 365, 2, 35, 2020.
  • [40] Pesaran, M.H., Shin, Y. and Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics. 16, 3, 289–326, 2001.
  • [41] Pesaran, M.H. and Shin, Y. An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. Econometrics and Economic Theory in the 20th Century. S. Strom, ed. Cambridge University Press. 371–413, 1999.
  • [42] Atici, R. and Sagir, S. The Effect on Sporadic-E of Quasi-Biennial Oscillation. Journal of Physical Science and Application. 6, 2, 2016.
  • [43] Dickey, D.A. and Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association. 74, 366, 427–431, 1979.
  • [44] Phillips, P.C.B. and Perron, P. Testing for a unit root in time series regression. Biometrika. 75, 2, 335–346, 1988.
  • [45] MacKinnon, J.G. Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Applied Econometrics. 11, 6, 601–618, 1996.
  • [46] Sağır S, Atıcı R. Jeomanyetik fırtına süresince NeQuick2 modelinin performansı. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi. 2019;7(2):689–696. doi:10.18586/msufbd.650664
  • [47] Sagir S, Karatay S, Atici R, Yesil A, Ozcan O. The relationship between the Quasi Biennial Oscillation and Sunspot Number. Advances in Space Research. 2015;55(1):106–112. doi:https://doi.org/10.1016/j.asr.2014.09.035
  • [48] Atici, R. and Sagir, S. The effect of QBO on foE. Advances in Space Research. 60, 2, 357–362, 2017.
  • [49] Sagir, S. and Atici, R. Comparison of the QBO and F10.7 Solar Flux Effects on Total Mass Density. Geomagnetism and Aeronomy. 58, 7, 841–845, 2018.
  • [50] Fukushima, N. Electric potential difference between conjugate points in middle latitudes caused by asymmetric dynamo in the ionosphere. Journal of geomagnetism and geoelectricity. 31, 3, 401–409, 1979.
  • [51] Yamazaki Y, Maute A. Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents. Space Science Reviews. 2017;206(1–4):299–405. doi:10.1007/s11214-016-0282-z.

25-26 Ağustos 2018 Jeomanyetik Fırtına Sırasında Afrika Bölgesi Üzerindeki Manyetik Eşlenik Çiftleri Üzerindeki TEC Değişikliklerinin İncelenmesi

Year 2023, Volume: 11 Issue: 2, 55 - 64, 31.12.2023
https://doi.org/10.18586/msufbd.1353252

Abstract

Bu çalışmada, 25-26 Ağustos 2018 jeomanyetik fırtınası sırasında, Afrika bölgesi üzerinde iki manyetik eşlenik çifti arasındaki elektromanyetik sürüklenmeden kaynaklanan elektron taşıma süreci araştırıldı. Dst indeksi ve IMF Bz değerleri ile sunulan jeomanyetik koşulların, eşlenik istasyonlardaki Toplam Elektron İçeriği (TEC) değerleri üzerindeki etkileri fırtınalı ve sessiz dönemler için ayrı ayrı karşılaştırılmıştır. Fırtına döneminde kuzey yarımküredeki istasyonlardaki (Haifa ve Cibuti) TEC değerlerinin güney yarımküredeki (Ambalavao ve Malindi) istasyonlardaki TEC değerlerine etkisi, güney yarımküredeki TEC değerlerinin kuzey yarımküredeki TEC değerlerine etkisinden daha fazladır. Bu sonuca göre incelenen tarihlerde güney yönlü elektromanyetik taşınımın kuzey yönlü taşınımdan daha fazla olduğu söylenebilir. Katsayılar incelendiğinde fırtına döneminde ekvatora daha yakın olan manyetik eşlenik çiftinde etkileşimin daha fazla olduğu, sessiz dönemde ise ekvatora uzak olan manyetik eşlenik çiftinde etkileşimin daha fazla olduğu söylenebilir. Dst ve IMF Bz için hesaplanan katsayılar dikkate alındığında TEC değerlerinin katsayılarına göre çok küçük olduğu görülmektedir. Buradan Dst ve IMF Bz'nin etkisinin, bir istasyondaki TEC değerlerinin, manyetik eşleniklerindeki TEC değerleri üzerindeki etkisinden çok daha küçük olduğu sonucuna varılabilir.

References

  • [1] Scolini, C., Chané, E., Temmer, M., Kilpua, E.K.J., Dissauer, K., Veronig, A.M., Palmerio, E., Pomoell, J., Dumbović, M., Guo, J., Rodriguez, L. and Poedts, S. CME–CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. The Astrophysical Journal Supplement Series. 247, 1, 21, 2020.
  • [2] Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S. and Zhukov, A.N. Solar and interplanetary sources of major geomagnetic storms (Dst ≤-100 nT) during 1996–2005. Journal of Geophysical Research: Space Physics. 112, A10, 2007.
  • [3] Gosling, J.T. Coronal Mass Ejections: An Overview. Geophysical Monograph Series. N. Crooker, J.A. Joselyn, and J. Feynman, eds. American Geophysical Union. 9–16, 2013.
  • [4] Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G. and Russell, C.T. Multipoint ICME encounters: Pre-STEREO and STEREO observations. Journal of Atmospheric and Solar-Terrestrial Physics. 73, 10, 1228–1241, 2011.
  • [5] Cherniak, I. and Zakharenkova, I. Large‐Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm. Space Weather. 16, 9, 1377–1395, 2018.
  • [6] Blagoveshchensky, D.V. and Sergeeva, M.A. Ionospheric parameters in the European sector during the magnetic storm of August 25–26, 2018. Advances in Space Research. 65, 1, 11–18, 2020.
  • [7] Yang, Y. ‐Y., Zhima, Z. ‐R., Shen, X. ‐H., Chu, W., Huang, J. ‐P., Wang, Q., Yan, R., Xu, S., Lu, H. ‐X. and Liu, D. ‐P. The First Intense Geomagnetic Storm Event Recorded by the China Seismo‐Electromagnetic Satellite. Space Weather. 18, 1, 2020.
  • [8] Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S. and Zhukov, A.N. Solar and interplanetary sources of major geomagnetic storms (Dst ≤-100 nT) during 1996–2005. Journal of Geophysical Research: Space Physics. 112, A10, 2007.
  • [9] Richmond, A. D., Lu, G. Upper-atmospheric effects of magnetic storms: a brief tutorial. Journal of Atmospheric and Solar-Terrestrial Physics. 62, 1115–1127, 2000.
  • [10] Arowolo, O.A., Akala, A.O. and Oyeyemi, E.O. Interplanetary Origins of Some Intense Geomagnetic Storms During Solar Cycle 24 and the Responses of African Equatorial/Low‐Latitude Ionosphere to Them. Journal of Geophysical Research: Space Physics. 126, 2, 2021.
  • [11] Abdu, M.A. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Solar-Terrestrial Physics. 75–76, 2012.
  • [12] Amaechi, P.O., Oyeyemi, E.O. and Akala, A.O. Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region. Advances in Space Research. 61, 8, 2074–2090, 2018.
  • [13] Valladares, C.E., Sheehan, R., Basu, S., Kuenzler, H. and Espinoza, J. The multi-instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal drifts. Journal of Geophysical Research: Space Physics. 101, A12, 26839–26850, 1996.
  • [14] Ansari, K., Panda, S.K. and Jamjareegulgarn, P. Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period. Acta Astronautica. 169, 216–223, 2020.
  • [15] Kelley, M.C. and Heelis, R.A. The earth’s ionosphere: plasma physics and electrodynamics. Academic Press, 1989.
  • [16] Takahashi, H., Essien, P., A. O. B. Figueiredo, C., M. Wrasse, C., Barros, D., A. Abdu, M., Otsuka, Y., Shiokawa, K., Li, G., Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan, and Institute of Geology and Geophysics, 5, 5, 1–10, 2021.
  • [17] Appleton, E.V. Two Anomalies in the Ionosphere. Nature. 157, 3995, 691–691. 1946.
  • [18] Li, M. and Parrot, M. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Advances in Space Research. 61, 3, 974–984, 2018.
  • [19] Sergeenko, N.P. Irregular Phenomena in Magnetically Conjugate Regions of the F2 Layer of the Ionosphere. Geomagnetism and Aeronomy. 58, 6, 823–830, 2018.
  • [20] Hanson, W.B. Electron temperatures in the upper atmosphere. Space Research. 5, 282–302, 1963.
  • [21] Bittencourt, J.A. and Sahai, Y. F-region neutral winds from ionosonde measurements of hmF2 at low latitude magnetic conjugate regions. Journal of Atmospheric and Terrestrial Physics. 40, 6, 669–676, 1978.
  • [22] Campbell, W. H., Matsushita, S. World maps of conjugate coordinates and L contours. Journal of Geophysical Research. 72, 3518–3521, 1967.
  • [23] Gulyaeva, T.L., Arikan, F., Stanislawska, I. and Poustovalova, L.V. Symmetry and asymmetry of ionospheric weather at magnetic conjugate points for two midlatitude observatories. Advances in Space Research. 52, 10, 1837–1844, 2013.
  • [24] Le, H., Liu, L., Yue, X. and Wan, W. The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse. Annales Geophysicae. 27, 1, 179–184, 2009.
  • [25] Oguti, T. Conjugate point problems. Space Science Reviews. 9, 6, 745–804, 1969.
  • [26] Timocin, E., Unal, I., Tulunay, Y. and Goker, U.D. The effect of geomagnetic activity changes on the ionospheric critical frequencies (foF2) at magnetic conjugate points. Advances in Space Research. 62, 4, 821–828, 2018.
  • [27] Unal, I. The Comparison of Responses to Geomagnetic Activity Changes of foF2 Predicted by IRI with Observations at Magnetic Conjugate Points for Middle and High Latitudes. Sakarya University Journal of Science. 619–625, 2020.
  • [28] Wescott, E.M. Magnetoconjugate phenomena. Space Science Reviews. 5, 507–561, 1966.
  • [29] Dabbakuti, J.R.K.K., Yarrakula, M., Panda, S.K., Jamjareegulgarn, P. and Haq, M.A. Total electron content prediction using singular spectrum analysis and autoregressive moving average approach. Astrophysics and Space Science. 367, 1, 8, 2022.
  • [30] Gordiyenko, G.I., Maltseva, O.A., Arikan, F. and Yakovets, A.F. An evaluation of the IRI-Plas-TEC for winter anomaly along the mid-latitude sector based on GIM-TEC and foF2 values. Advances in Space Research. 64, 10, 2046–2063, 2019.
  • [31] Shubin, V.N. and Gulyaeva, T.L. Global mapping of total electron content from GNSS observations for updating IRI-Plas model. Advances in Space Research. 69, 1, 168–175, 2022.
  • [32] Siddiqui, T.A., Yamazaki, Y., Stolle, C., Maute, A., Laštovička, J., Edemskiy, I.K., Mošna, Z. and Sivakandan, M. Understanding the Total Electron Content Variability Over Europe During 2009 and 2019 SSWs. Journal of Geophysical Research: Space Physics. 126, 9, 2021.
  • [33] Arikan, F. Regularized estimation of vertical total electron content from Global Positioning System data. Journal of Geophysical Research. 108, A12, 1469, 2003.
  • [34] Nayir, H., Arikan, F., Arikan, O. and Erol, C.B. Total Electron Content Estimation with Reg-Est. Journal of Geophysical Research: Space Physics. 112, A11, 2007.
  • [35] Sezen, U., Arikan, F., Arikan, O., Ugurlu, O. and Sadeghimorad, A. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather. 11, 5, 297–305, 2013.
  • [36] Lissa, D., Srinivasu, V.K.D., Prasad, D.S.V.V.D. and Niranjan, K. Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80° E and 120° E longitudes in the Asian sector. Advances in Space Research. 66, 6, 1427–1440, 2020.
  • [37] Mansilla, G.A. and Zossi, M.M. Ionospheric response to the 26 August 2018 geomagnetic storm along 280° E and 316° E in the South American sector. Advances in Space Research. 69, 1, 48–58, 2022.
  • [38] Jenan, R., Dammalage, T.L. and Panda, S.K. Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronautica. 180, 575–587, 2021.
  • [39] Sharma, S.K., Singh, A.K., Panda, S.K. and Ahmed, S.S. The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on St. Patrick’s Day storm. Astrophysics and Space Science. 365, 2, 35, 2020.
  • [40] Pesaran, M.H., Shin, Y. and Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics. 16, 3, 289–326, 2001.
  • [41] Pesaran, M.H. and Shin, Y. An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. Econometrics and Economic Theory in the 20th Century. S. Strom, ed. Cambridge University Press. 371–413, 1999.
  • [42] Atici, R. and Sagir, S. The Effect on Sporadic-E of Quasi-Biennial Oscillation. Journal of Physical Science and Application. 6, 2, 2016.
  • [43] Dickey, D.A. and Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association. 74, 366, 427–431, 1979.
  • [44] Phillips, P.C.B. and Perron, P. Testing for a unit root in time series regression. Biometrika. 75, 2, 335–346, 1988.
  • [45] MacKinnon, J.G. Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Applied Econometrics. 11, 6, 601–618, 1996.
  • [46] Sağır S, Atıcı R. Jeomanyetik fırtına süresince NeQuick2 modelinin performansı. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi. 2019;7(2):689–696. doi:10.18586/msufbd.650664
  • [47] Sagir S, Karatay S, Atici R, Yesil A, Ozcan O. The relationship between the Quasi Biennial Oscillation and Sunspot Number. Advances in Space Research. 2015;55(1):106–112. doi:https://doi.org/10.1016/j.asr.2014.09.035
  • [48] Atici, R. and Sagir, S. The effect of QBO on foE. Advances in Space Research. 60, 2, 357–362, 2017.
  • [49] Sagir, S. and Atici, R. Comparison of the QBO and F10.7 Solar Flux Effects on Total Mass Density. Geomagnetism and Aeronomy. 58, 7, 841–845, 2018.
  • [50] Fukushima, N. Electric potential difference between conjugate points in middle latitudes caused by asymmetric dynamo in the ionosphere. Journal of geomagnetism and geoelectricity. 31, 3, 401–409, 1979.
  • [51] Yamazaki Y, Maute A. Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents. Space Science Reviews. 2017;206(1–4):299–405. doi:10.1007/s11214-016-0282-z.
There are 51 citations in total.

Details

Primary Language English
Subjects Mesospheric, Thermospheric, Ionospheric and Magnetospheric Physics
Journal Section Research Article
Authors

Serhat Korlaelçi 0000-0002-0956-4721

Early Pub Date December 12, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Korlaelçi, S. (2023). Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 11(2), 55-64. https://doi.org/10.18586/msufbd.1353252
AMA Korlaelçi S. Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018. MAUN Fen Bil. Dergi. December 2023;11(2):55-64. doi:10.18586/msufbd.1353252
Chicago Korlaelçi, Serhat. “Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region During the Geomagnetic Storm of August 25-26, 2018”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 11, no. 2 (December 2023): 55-64. https://doi.org/10.18586/msufbd.1353252.
EndNote Korlaelçi S (December 1, 2023) Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 11 2 55–64.
IEEE S. Korlaelçi, “Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018”, MAUN Fen Bil. Dergi., vol. 11, no. 2, pp. 55–64, 2023, doi: 10.18586/msufbd.1353252.
ISNAD Korlaelçi, Serhat. “Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region During the Geomagnetic Storm of August 25-26, 2018”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 11/2 (December 2023), 55-64. https://doi.org/10.18586/msufbd.1353252.
JAMA Korlaelçi S. Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018. MAUN Fen Bil. Dergi. 2023;11:55–64.
MLA Korlaelçi, Serhat. “Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region During the Geomagnetic Storm of August 25-26, 2018”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 2, 2023, pp. 55-64, doi:10.18586/msufbd.1353252.
Vancouver Korlaelçi S. Investigation of TEC Changes on Magnetic Conjugate Pairs over the Africa Region during the Geomagnetic Storm of August 25-26, 2018. MAUN Fen Bil. Dergi. 2023;11(2):55-64.