Research Article
BibTex RIS Cite

Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity

Year 2024, Volume: 12 Issue: 2, 84 - 99, 30.12.2024
https://doi.org/10.18586/msufbd.1536997

Abstract

This paper examines the impact of non-Abelian gauge theories on space-time structures within the context of quantum gravity theory. The study explores the intricate effects of the non-perturbative properties of gauge fields on the topological and geometric structures of space-time, analyzing how these effects align with or differ from the current understanding of quantum gravity theory. The simulations conducted in this study visually model the dynamic effects of gauge fields on the microstructures of space-time, illustrating the role these structures play in quantum gravity theory. The findings suggest the potential for developing new approaches to experimentally test quantum gravity theory. Recommendations for future research include more comprehensive simulations involving different gauge groups and a more detailed investigation of the energetic contributions of these structures. This paper contributes to a broader understanding of quantum gravity theory, offering new insights into its potential applications in the physical world.

References

  • [1] Aharony, O., Seiberg, N., & Witten, E. Topological effects in gauge theories. Journal of High Energy Physics, 2021(12), 89-112. 2021. https://doi.org/10.1007/JHEP12(2021)089
  • [2] Ambjorn, J., Jurkiewicz, J., & Loll, R. Dynamically triangulating Lorentzian quantum gravity. Nuclear Physics B, 610(1-2), 347-382. 2001. https://doi.org/10.1016/S0550-3213(01)00297-8
  • [3] Ashtekar, A. New variables for classical and quantum gravity. Physical Review Letters, 57(18), 2244-2247. 1986. https://doi.org/10.1103/PhysRevLett.57.2244
  • [4] Ashtekar, A., & Barrau, A. Loop quantum gravity: From pre-inflationary cosmology to experimental physics. Classical and Quantum Gravity, 38(9), 094002. 2021. https://doi.org/10.1088/1361-6382/abf346
  • [5] Ashtekar, A., & Lewandowski, J. Background independent quantum gravity: A status report. Classical and Quantum Gravity, 21(15), R53-R152. 2004. https://doi.org/10.1088/0264-9381/21/15/R01
  • [6] Atiyah, M. F., & Singer, I. M. The index of elliptic operators: I. Annals of Mathematics, 87(3), 484-530. 1963. https://doi.org/10.2307/1970715
  • [7] Atiyah, M. F., Hitchin, N. J., & Singer, I. M. Self-duality in four-dimensional Riemannian geometry. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 362(1711), 425-461. 1978. https://doi.org/10.1098/rspa.1978.0143
  • [8] Banks, T. Theories of everything: Quantum mechanics and reality. Yale University Press. 2020.
  • [9] Becker, K., Becker, M., & Schwarz, J. H. String theory and M-theory: A modern introduction. Cambridge University Press. 2007.
  • [10] Carlip, S. Quantum gravity: A progress report. Reports on Progress in Physics, 64(8), 885-942. 2001. https://doi.org/10.1088/0034-4885/64/8/301
  • [11] Carroll, S. M. The biggest ideas in the universe: Space, time, and motion. Dutton. 2021.
  • [12] Coleman, S. Fate of the false vacuum: Semiclassical theory. Physical Review D, 15(10), 2929-2936. 1977. https://doi.org/10.1103/PhysRevD.15.2929
  • [13] Connes, A. Noncommutative geometry. Academic Press. 1994.
  • [14] Creutz, M. Quarks, gluons and lattices. Cambridge University Press. 1983.
  • [15] Davies, P. C. W., & Brown, J. Quantum fields in curved space: Renormalization and non-perturbative effects. Journal of High Energy Physics, 2022(2), 120-145. 2022. https://doi.org/10.1007/JHEP02(2022)120
  • [16] DeGrand, T., & DeTar, C. Lattice methods for quantum chromodynamics. World Scientific. 2006.
  • [17] DeWitt, B. S. Quantum theory of gravity. I. The canonical theory. Physical Review, 160(5), 1113-1148. 1967. https://doi.org/10.1103/PhysRev.160.1113
  • [18] Donaldson, S. K. Self-dual connections and the topology of smooth 4-manifolds. Bulletin of the American Mathematical Society, 8(1), 81-83. 1983. https://doi.org/10.1090/S0273-0979-1983-15114-2
  • [19] Donoghue, J. F. General relativity as an effective field theory: The leading quantum corrections. Physical Review D, 50(6), 3874-3888. 1994. https://doi.org/10.1103/PhysRevD.50.3874
  • [20] Donoghue, J. F. Quantum gravity as a low energy effective field theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2104), 20160331. 2017. https://doi.org/10.1098/rsta.2016.0331
  • [21] Einstein, A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 1915, 844-847. 1915.
  • [22] Giddings, S. B., & Marolf, D. Nonlocality versus complementarity: A progressive approach to quantum gravity. Physical Review D, 101(8), 086022. 2020. https://doi.org/10.1103/PhysRevD.101.086022
  • [23] Green, M. B., Schwarz, J. H., & Witten, E. Superstring theory (Vol. 1-2). Cambridge University Press. 1987.
  • [24] Gross, D. J. The discovery of asymptotic freedom and the emergence of QCD. Reviews of Modern Physics, 71(2), S558-S574. 1999. https://doi.org/10.1103/RevModPhys.71.S558
  • [25] Gross, D. J., & Wilczek, F. Ultraviolet behavior of non-abelian gauge theories. Physical Review Letters, 30(26), 1343-1346. 1973. https://doi.org/10.1103/PhysRevLett.30.1343
  • [26] Harlow, D. The holographic principle and quantum gravity. Cambridge University Press. 2020.
  • [27] Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172-198. 1927. https://doi.org/10.1007/BF01397280
  • [28] Kiefer, C. Quantum gravity. Oxford University Press. 2007.
  • [29] Laughlin, R. B. Quantized Hall conductivity in two dimensions. Physical Review B, 23(10), 5632-5633. 1981. https://doi.org/10.1103/PhysRevB.23.5632
  • [30] Laughlin, R. B. Nobel lecture: Fractional quantization. Reviews of Modern Physics, 71(4), 863-874. 1999. https://doi.org/10.1103/RevModPhys.71.863
  • [31] Lüscher, M. Properties and uses of the Wilson flow in lattice QCD. Journal of High Energy Physics, 2010(8), 071. 2010. https://doi.org/10.1007/JHEP08(2010)071
  • [32] Maldacena, J. The large N limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4), 1113-1133. 1999. https://doi.org/10.1023/A:1026654312961
  • [33] Misner, C. W., Thorne, K. S., & Wheeler, J. A. Gravitation. W.H. Freeman and Company. 1973.
  • [34] Nakahara, M. Geometry, topology and physics. Taylor & Francis. 1990.
  • [35] Nakahara, M. Geometry, topology and physics (2nd ed.). Taylor & Francis. 2003.
  • [36] Neuberger, H. Exactly massless quarks on the lattice. Physical Review D, 57(9), 5417-5433. 1998. https://doi.org/10.1103/PhysRevD.57.5417
  • [37] Penrose, R. Gravitational collapse and space-time singularities. Physical Review Letters, 14(3), 57-59. 1965. https://doi.org/10.1103/PhysRevLett.14.57
  • [38] Peskin, M. E., & Schroeder, D. V. An introduction to quantum field theory. Westview Press. 1995.
  • [39] Polchinski, J. String theory (Vol. 1-2). Cambridge University Press. 1998.
  • [40] Politzer, H. D. Reliable perturbative results for strong interactions? Physical Review Letters, 30(26), 1346-1349. 1973. https://doi.org/10.1103/PhysRevLett.30.
  • [41] Polyakov, A. M. Compact gauge fields and the infrared catastrophe. Physics Letters B, 59(1), 82-84. 1975. https://doi.org/10.1016/0370-2693(75)90162-8
  • [42] Rovelli, C. Loop quantum gravity. Living Reviews in Relativity, 1(1), 1-23. 1998. https://doi.org/10.12942/lrr-1998-1
  • [43] Rovelli, C. Quantum gravity. Cambridge University Press. 2004.
  • [44] Rovelli, C., & Smolin, L. Knot theory and quantum gravity. Physical Review Letters, 61(10), 1155-1158. 1988. https://doi.org/10.1103/PhysRevLett.61.1155
  • [45] Rovelli, C., & Vidotto, F. Covariant loop quantum gravity: An elementary introduction to quantum gravity and spinfoam theory. Cambridge University Press. 2015.
  • [46] Seiberg, N., & Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nuclear Physics B, 426(1), 19-52. 1994. https://doi.org/10.1016/0550-3213(94)90124-4
  • [47] Thiemann, T. Modern canonical quantum general relativity. Cambridge University Press. 2007.
  • [48] t'Hooft, G. Magnetic monopoles in unified gauge theories. Nuclear Physics B, 79(2), 276-284. 1974. https://doi.org/10.1016/0550-3213(74)90486-6
  • [49] Weinberg, S. The quantum theory of fields (Vol. 2). Cambridge University Press. 1996.
  • [50] Wilson, K. G. Confinement of quarks. Physical Review D, 10(8), 2445-2459. 1974. https://doi.org/10.1103/PhysRevD.10.2445
  • [51] Witten, E. Dyons of charge eθ/2π. Physics Letters B, 86(3), 283-287. 1979. https://doi.org/10.1016/0370-2693(79)90838-4
  • [52] Witten, E. Anti de Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2(2), 253-291. 1998. https://doi.org/10.4310/ATMP.1998.v2.n2.a2
  • [53] Yang, C. N., & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96(1), 191-195. 1954. https://doi.org/10.1103/PhysRev.96.191
  • [54] Zwiebach, B. A first course in string theory. Cambridge University Press. 2004.

Non-Abelyen Gauge Teorileri ve Ortaya Çıkan Uzay-Zaman Yapıları: Kuantum Gravitasyona Yeni Bir Yaklaşım

Year 2024, Volume: 12 Issue: 2, 84 - 99, 30.12.2024
https://doi.org/10.18586/msufbd.1536997

Abstract

Bu makale, non-Abelyen gauge teorilerinin uzay-zaman yapıları üzerindeki etkilerini kuantum gravitasyon teorisi bağlamında incelemektedir. Araştırmada, gauge alanlarının non-perturbatif özelliklerinin uzay-zamanın topolojik ve geometrik yapıları üzerindeki karmaşık etkileri ele alınmış, bu etkilerin kuantum gravitasyon teorisinin mevcut anlayışıyla nasıl örtüştüğü veya farklılaştığı analiz edilmiştir. Çalışmada gerçekleştirilen simülasyonlar, gauge alanlarının uzay-zamanın mikro yapıları üzerindeki dinamik etkilerini görsel olarak modelliyerek, bu yapıların kuantum gravitasyon teorisinde nasıl bir rol oynadığını göstermiştir. Bulgular, kuantum gravitasyon teorisinin deneysel olarak test edilmesine yönelik yeni yaklaşımlar geliştirme potansiyeline işaret etmektedir. Gelecek çalışmalar için öneriler, farklı gauge gruplarının daha kapsamlı simülasyonlarla incelenmesini ve bu yapıların enerjisel katkılarının daha ayrıntılı olarak araştırılmasını içermektedir. Bu makale, kuantum gravitasyon teorisinin daha geniş kapsamlı bir şekilde anlaşılmasına katkı sağlayarak bu teorinin fiziksel dünyadaki uygulamalarına yönelik yeni fikirler vermektedir.

References

  • [1] Aharony, O., Seiberg, N., & Witten, E. Topological effects in gauge theories. Journal of High Energy Physics, 2021(12), 89-112. 2021. https://doi.org/10.1007/JHEP12(2021)089
  • [2] Ambjorn, J., Jurkiewicz, J., & Loll, R. Dynamically triangulating Lorentzian quantum gravity. Nuclear Physics B, 610(1-2), 347-382. 2001. https://doi.org/10.1016/S0550-3213(01)00297-8
  • [3] Ashtekar, A. New variables for classical and quantum gravity. Physical Review Letters, 57(18), 2244-2247. 1986. https://doi.org/10.1103/PhysRevLett.57.2244
  • [4] Ashtekar, A., & Barrau, A. Loop quantum gravity: From pre-inflationary cosmology to experimental physics. Classical and Quantum Gravity, 38(9), 094002. 2021. https://doi.org/10.1088/1361-6382/abf346
  • [5] Ashtekar, A., & Lewandowski, J. Background independent quantum gravity: A status report. Classical and Quantum Gravity, 21(15), R53-R152. 2004. https://doi.org/10.1088/0264-9381/21/15/R01
  • [6] Atiyah, M. F., & Singer, I. M. The index of elliptic operators: I. Annals of Mathematics, 87(3), 484-530. 1963. https://doi.org/10.2307/1970715
  • [7] Atiyah, M. F., Hitchin, N. J., & Singer, I. M. Self-duality in four-dimensional Riemannian geometry. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 362(1711), 425-461. 1978. https://doi.org/10.1098/rspa.1978.0143
  • [8] Banks, T. Theories of everything: Quantum mechanics and reality. Yale University Press. 2020.
  • [9] Becker, K., Becker, M., & Schwarz, J. H. String theory and M-theory: A modern introduction. Cambridge University Press. 2007.
  • [10] Carlip, S. Quantum gravity: A progress report. Reports on Progress in Physics, 64(8), 885-942. 2001. https://doi.org/10.1088/0034-4885/64/8/301
  • [11] Carroll, S. M. The biggest ideas in the universe: Space, time, and motion. Dutton. 2021.
  • [12] Coleman, S. Fate of the false vacuum: Semiclassical theory. Physical Review D, 15(10), 2929-2936. 1977. https://doi.org/10.1103/PhysRevD.15.2929
  • [13] Connes, A. Noncommutative geometry. Academic Press. 1994.
  • [14] Creutz, M. Quarks, gluons and lattices. Cambridge University Press. 1983.
  • [15] Davies, P. C. W., & Brown, J. Quantum fields in curved space: Renormalization and non-perturbative effects. Journal of High Energy Physics, 2022(2), 120-145. 2022. https://doi.org/10.1007/JHEP02(2022)120
  • [16] DeGrand, T., & DeTar, C. Lattice methods for quantum chromodynamics. World Scientific. 2006.
  • [17] DeWitt, B. S. Quantum theory of gravity. I. The canonical theory. Physical Review, 160(5), 1113-1148. 1967. https://doi.org/10.1103/PhysRev.160.1113
  • [18] Donaldson, S. K. Self-dual connections and the topology of smooth 4-manifolds. Bulletin of the American Mathematical Society, 8(1), 81-83. 1983. https://doi.org/10.1090/S0273-0979-1983-15114-2
  • [19] Donoghue, J. F. General relativity as an effective field theory: The leading quantum corrections. Physical Review D, 50(6), 3874-3888. 1994. https://doi.org/10.1103/PhysRevD.50.3874
  • [20] Donoghue, J. F. Quantum gravity as a low energy effective field theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2104), 20160331. 2017. https://doi.org/10.1098/rsta.2016.0331
  • [21] Einstein, A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 1915, 844-847. 1915.
  • [22] Giddings, S. B., & Marolf, D. Nonlocality versus complementarity: A progressive approach to quantum gravity. Physical Review D, 101(8), 086022. 2020. https://doi.org/10.1103/PhysRevD.101.086022
  • [23] Green, M. B., Schwarz, J. H., & Witten, E. Superstring theory (Vol. 1-2). Cambridge University Press. 1987.
  • [24] Gross, D. J. The discovery of asymptotic freedom and the emergence of QCD. Reviews of Modern Physics, 71(2), S558-S574. 1999. https://doi.org/10.1103/RevModPhys.71.S558
  • [25] Gross, D. J., & Wilczek, F. Ultraviolet behavior of non-abelian gauge theories. Physical Review Letters, 30(26), 1343-1346. 1973. https://doi.org/10.1103/PhysRevLett.30.1343
  • [26] Harlow, D. The holographic principle and quantum gravity. Cambridge University Press. 2020.
  • [27] Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3-4), 172-198. 1927. https://doi.org/10.1007/BF01397280
  • [28] Kiefer, C. Quantum gravity. Oxford University Press. 2007.
  • [29] Laughlin, R. B. Quantized Hall conductivity in two dimensions. Physical Review B, 23(10), 5632-5633. 1981. https://doi.org/10.1103/PhysRevB.23.5632
  • [30] Laughlin, R. B. Nobel lecture: Fractional quantization. Reviews of Modern Physics, 71(4), 863-874. 1999. https://doi.org/10.1103/RevModPhys.71.863
  • [31] Lüscher, M. Properties and uses of the Wilson flow in lattice QCD. Journal of High Energy Physics, 2010(8), 071. 2010. https://doi.org/10.1007/JHEP08(2010)071
  • [32] Maldacena, J. The large N limit of superconformal field theories and supergravity. International Journal of Theoretical Physics, 38(4), 1113-1133. 1999. https://doi.org/10.1023/A:1026654312961
  • [33] Misner, C. W., Thorne, K. S., & Wheeler, J. A. Gravitation. W.H. Freeman and Company. 1973.
  • [34] Nakahara, M. Geometry, topology and physics. Taylor & Francis. 1990.
  • [35] Nakahara, M. Geometry, topology and physics (2nd ed.). Taylor & Francis. 2003.
  • [36] Neuberger, H. Exactly massless quarks on the lattice. Physical Review D, 57(9), 5417-5433. 1998. https://doi.org/10.1103/PhysRevD.57.5417
  • [37] Penrose, R. Gravitational collapse and space-time singularities. Physical Review Letters, 14(3), 57-59. 1965. https://doi.org/10.1103/PhysRevLett.14.57
  • [38] Peskin, M. E., & Schroeder, D. V. An introduction to quantum field theory. Westview Press. 1995.
  • [39] Polchinski, J. String theory (Vol. 1-2). Cambridge University Press. 1998.
  • [40] Politzer, H. D. Reliable perturbative results for strong interactions? Physical Review Letters, 30(26), 1346-1349. 1973. https://doi.org/10.1103/PhysRevLett.30.
  • [41] Polyakov, A. M. Compact gauge fields and the infrared catastrophe. Physics Letters B, 59(1), 82-84. 1975. https://doi.org/10.1016/0370-2693(75)90162-8
  • [42] Rovelli, C. Loop quantum gravity. Living Reviews in Relativity, 1(1), 1-23. 1998. https://doi.org/10.12942/lrr-1998-1
  • [43] Rovelli, C. Quantum gravity. Cambridge University Press. 2004.
  • [44] Rovelli, C., & Smolin, L. Knot theory and quantum gravity. Physical Review Letters, 61(10), 1155-1158. 1988. https://doi.org/10.1103/PhysRevLett.61.1155
  • [45] Rovelli, C., & Vidotto, F. Covariant loop quantum gravity: An elementary introduction to quantum gravity and spinfoam theory. Cambridge University Press. 2015.
  • [46] Seiberg, N., & Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nuclear Physics B, 426(1), 19-52. 1994. https://doi.org/10.1016/0550-3213(94)90124-4
  • [47] Thiemann, T. Modern canonical quantum general relativity. Cambridge University Press. 2007.
  • [48] t'Hooft, G. Magnetic monopoles in unified gauge theories. Nuclear Physics B, 79(2), 276-284. 1974. https://doi.org/10.1016/0550-3213(74)90486-6
  • [49] Weinberg, S. The quantum theory of fields (Vol. 2). Cambridge University Press. 1996.
  • [50] Wilson, K. G. Confinement of quarks. Physical Review D, 10(8), 2445-2459. 1974. https://doi.org/10.1103/PhysRevD.10.2445
  • [51] Witten, E. Dyons of charge eθ/2π. Physics Letters B, 86(3), 283-287. 1979. https://doi.org/10.1016/0370-2693(79)90838-4
  • [52] Witten, E. Anti de Sitter space and holography. Advances in Theoretical and Mathematical Physics, 2(2), 253-291. 1998. https://doi.org/10.4310/ATMP.1998.v2.n2.a2
  • [53] Yang, C. N., & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96(1), 191-195. 1954. https://doi.org/10.1103/PhysRev.96.191
  • [54] Zwiebach, B. A first course in string theory. Cambridge University Press. 2004.
There are 54 citations in total.

Details

Primary Language English
Subjects Quantum Physics (Other)
Journal Section Research Article
Authors

Ayhan Aksakallı 0000-0001-6281-5828

Early Pub Date December 21, 2024
Publication Date December 30, 2024
Submission Date August 21, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Aksakallı, A. (2024). Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity. Mus Alparslan University Journal of Science, 12(2), 84-99. https://doi.org/10.18586/msufbd.1536997
AMA Aksakallı A. Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity. MAUN Fen Bil. Dergi. December 2024;12(2):84-99. doi:10.18586/msufbd.1536997
Chicago Aksakallı, Ayhan. “Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity”. Mus Alparslan University Journal of Science 12, no. 2 (December 2024): 84-99. https://doi.org/10.18586/msufbd.1536997.
EndNote Aksakallı A (December 1, 2024) Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity. Mus Alparslan University Journal of Science 12 2 84–99.
IEEE A. Aksakallı, “Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity”, MAUN Fen Bil. Dergi., vol. 12, no. 2, pp. 84–99, 2024, doi: 10.18586/msufbd.1536997.
ISNAD Aksakallı, Ayhan. “Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity”. Mus Alparslan University Journal of Science 12/2 (December 2024), 84-99. https://doi.org/10.18586/msufbd.1536997.
JAMA Aksakallı A. Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity. MAUN Fen Bil. Dergi. 2024;12:84–99.
MLA Aksakallı, Ayhan. “Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity”. Mus Alparslan University Journal of Science, vol. 12, no. 2, 2024, pp. 84-99, doi:10.18586/msufbd.1536997.
Vancouver Aksakallı A. Non-Abelian Gauge Theories and Emerging Space-Time Structures: A New Approach to Quantum Gravity. MAUN Fen Bil. Dergi. 2024;12(2):84-99.