Research Article
BibTex RIS Cite

Wijsman summability through Orlicz Function Sequences

Year 2024, Volume: 12 Issue: 2, 100 - 105, 30.12.2024
https://doi.org/10.18586/msufbd.1551410

Abstract

The Wijsman convergence is a type of convergence for sequences of closed sets in metric spaces, utilizing the distance from a point to a set. This study introduces a new sequence space by defining a summability concept for sequences of closed sets in the Wijsman sense, using sequences of Orlicz functions. Various inclusion theorems related to the space of Wijsman statistically convergent sequences of sets have been presented, considering different parameters used in the definition of this set sequence space. Additionally, in the obtained results, a concept of density has been employed using weight functions instead of asymptotic density.

References

  • [1] Wijsman R.A. Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70 186-188, 1964.
  • [2] Wijsman R.A. Convergence of sequences of convex sets, cones and functions II, Transactions of the American Mathematical Society, 123(1) 32-45, 1966.
  • [3] Beer G. Wijsman convergence: A survey, Set-Valued Analysis, 2 77-94, 1994.
  • Nuray F., Rhoades B. Statistical convergence of sequences of sets, Fasc. Math., 49 87–99, 2012.
  • [4] Ulusu U., Nuray F. Lacunary statistical convergence of sequence of sets, Prog. Appl. Math., 4(2) 99–109, 2012. doi: 10.3968/j.pam.1925252820120402.2264.
  • [5] Nuray F., Ulusu U., Dündar E. Lacunary statistical convergence of double sequences of sets, Soft Computing, 20 2883-2888, 2016.
  • [6] Altınok M., İnan B., Küçükaslan M. On Deferred Statistical Convergence of Sequences of Sets in Metric Space, Turkish Journal of Mathematics and Computer Science, 3(1), 1-9, 2016.
  • [7] Altınok M., İnan B., Küçükaslan M. On Asymptotically Wijsman Deferred Statistical Equivalence of Sequence of Sets, Thai Journal of Mathematics, 18(2), 803–817, 2020.
  • [8] Ulusu U., Dündar E., Gülle E. I_2-Cesàro summability of double sequences of sets, Palestine Journal of Mathematics, 9 561-568, 2020.
  • [9] Nuray F., Dündar E., Ulusu U. Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform., 16 55-64, 2021.
  • [10] Kandemir H.Ş., Et M. On I-lacunary statistical convergence of order α of sequences of sets, Filomat, 31 2403-2412, 2017.
  • [11] Aral N.D., Kandemir H.Ş., Et M. ρ-statistical convergence of sequences of sets. 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA 2020), Istanbul, Turkey, 2020.
  • [12] Aral N.D., Kandemir H.Ş., Et M. On ρ-statistical convergence of order α of sequence of sets, Miscolc Mathematical Notes, 24(2) 569-578, 2023. doi: 10.18514/MMN.2023.3503
  • [13] Fast H. Sur la convergence statistique, Colloq. Math., 2 241-244, 1951.
  • [14] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq Math 2:73-74, 1951.
  • [15] Schoenberg IJ. The integrability of certain functions and related summability methods. Amer Math Monthly 66:361-375, 1959.
  • [16] Šalát T. On statistically convergent sequences of real numbers, Mathematica Slovaca, 30(2) 139-150, 1980. Fridy j.A., On statistical convergence, Analysis, 5(4) 301-314, 1985.
  • [17] Connor, J. On strong matrix summability with respect to a modulus and statistical convergence, Can. Math. Bull., 32(2) 194-198, 1989.
  • [18] Mursaleen M. λ-statistical convergence, Mathematica Slovaca, 50(1) 111-115, 2000.
  • [19] Bektaş Ç.A. On some new generalized difference sequence spaces on seminormed spaces defined by a sequence of Orlicz functions, Math. Slovaca, 61 227–234, 2011.
  • [20] Çolak R., Bektaş Ç.A. λ-statistical convergence of order α, Acta Math. Sci., 31(3) 953-959, 2011.
  • [21] Et M., Şengül H., Some Cesàro-Type Summability of order and Lacunary Statistical Convergence of order α, Filomat, 28 1593-1602, 2014.
  • [22] Balcerzak M., Das P., Filipczak M., Swaczyna J. Generalized kinds of density and the associated ideals, Acta Math. Hung., 147 97-115, 2015.

Orlicz Fonksiyon Dizileri İle Wijsman Toplanabilirlik

Year 2024, Volume: 12 Issue: 2, 100 - 105, 30.12.2024
https://doi.org/10.18586/msufbd.1551410

Abstract

Wijsman yakınsaması, metrik uzaylarda kapalı küme dizileri için bir yakınsama türüdür ve bir noktanın bir kümeye olan uzaklığını kullanır. Bu çalışmada, Orlicz fonksiyonlarının dizileri kullanılarak, Wijsman anlamında kapalı kümeler dizileri için bir toplanabilirlik kavramı tanımlanarak yeni bir dizi uzayı önerilmiştir. Bu küme dizileri uzayının tanımlanmasında kullanılan parametrelerin farklılaşması durumunda veya Wijsman istatistiksel yakınsak küme dizilerinin uzayıyla ilişkili çeşitli kapsama teoremleri sunulmuştur. Ayrıca, elde edilen sonuçlarda, asimptotik yoğunluk yerine ağırlık fonksiyonları kullanılarak elde edilen bir yoğunluk kavramı kullanılmıştır.

References

  • [1] Wijsman R.A. Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70 186-188, 1964.
  • [2] Wijsman R.A. Convergence of sequences of convex sets, cones and functions II, Transactions of the American Mathematical Society, 123(1) 32-45, 1966.
  • [3] Beer G. Wijsman convergence: A survey, Set-Valued Analysis, 2 77-94, 1994.
  • Nuray F., Rhoades B. Statistical convergence of sequences of sets, Fasc. Math., 49 87–99, 2012.
  • [4] Ulusu U., Nuray F. Lacunary statistical convergence of sequence of sets, Prog. Appl. Math., 4(2) 99–109, 2012. doi: 10.3968/j.pam.1925252820120402.2264.
  • [5] Nuray F., Ulusu U., Dündar E. Lacunary statistical convergence of double sequences of sets, Soft Computing, 20 2883-2888, 2016.
  • [6] Altınok M., İnan B., Küçükaslan M. On Deferred Statistical Convergence of Sequences of Sets in Metric Space, Turkish Journal of Mathematics and Computer Science, 3(1), 1-9, 2016.
  • [7] Altınok M., İnan B., Küçükaslan M. On Asymptotically Wijsman Deferred Statistical Equivalence of Sequence of Sets, Thai Journal of Mathematics, 18(2), 803–817, 2020.
  • [8] Ulusu U., Dündar E., Gülle E. I_2-Cesàro summability of double sequences of sets, Palestine Journal of Mathematics, 9 561-568, 2020.
  • [9] Nuray F., Dündar E., Ulusu U. Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform., 16 55-64, 2021.
  • [10] Kandemir H.Ş., Et M. On I-lacunary statistical convergence of order α of sequences of sets, Filomat, 31 2403-2412, 2017.
  • [11] Aral N.D., Kandemir H.Ş., Et M. ρ-statistical convergence of sequences of sets. 3rd International E-Conference on Mathematical Advances and Applications (ICOMAA 2020), Istanbul, Turkey, 2020.
  • [12] Aral N.D., Kandemir H.Ş., Et M. On ρ-statistical convergence of order α of sequence of sets, Miscolc Mathematical Notes, 24(2) 569-578, 2023. doi: 10.18514/MMN.2023.3503
  • [13] Fast H. Sur la convergence statistique, Colloq. Math., 2 241-244, 1951.
  • [14] Steinhaus H. Sur la convergence ordinaire et la convergence asymptotique. Colloq Math 2:73-74, 1951.
  • [15] Schoenberg IJ. The integrability of certain functions and related summability methods. Amer Math Monthly 66:361-375, 1959.
  • [16] Šalát T. On statistically convergent sequences of real numbers, Mathematica Slovaca, 30(2) 139-150, 1980. Fridy j.A., On statistical convergence, Analysis, 5(4) 301-314, 1985.
  • [17] Connor, J. On strong matrix summability with respect to a modulus and statistical convergence, Can. Math. Bull., 32(2) 194-198, 1989.
  • [18] Mursaleen M. λ-statistical convergence, Mathematica Slovaca, 50(1) 111-115, 2000.
  • [19] Bektaş Ç.A. On some new generalized difference sequence spaces on seminormed spaces defined by a sequence of Orlicz functions, Math. Slovaca, 61 227–234, 2011.
  • [20] Çolak R., Bektaş Ç.A. λ-statistical convergence of order α, Acta Math. Sci., 31(3) 953-959, 2011.
  • [21] Et M., Şengül H., Some Cesàro-Type Summability of order and Lacunary Statistical Convergence of order α, Filomat, 28 1593-1602, 2014.
  • [22] Balcerzak M., Das P., Filipczak M., Swaczyna J. Generalized kinds of density and the associated ideals, Acta Math. Hung., 147 97-115, 2015.
There are 23 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other), Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Erdal Bayram 0000-0001-8488-359X

Early Pub Date December 21, 2024
Publication Date December 30, 2024
Submission Date September 17, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Bayram, E. (2024). Wijsman summability through Orlicz Function Sequences. Mus Alparslan University Journal of Science, 12(2), 100-105. https://doi.org/10.18586/msufbd.1551410
AMA Bayram E. Wijsman summability through Orlicz Function Sequences. MAUN Fen Bil. Dergi. December 2024;12(2):100-105. doi:10.18586/msufbd.1551410
Chicago Bayram, Erdal. “Wijsman Summability through Orlicz Function Sequences”. Mus Alparslan University Journal of Science 12, no. 2 (December 2024): 100-105. https://doi.org/10.18586/msufbd.1551410.
EndNote Bayram E (December 1, 2024) Wijsman summability through Orlicz Function Sequences. Mus Alparslan University Journal of Science 12 2 100–105.
IEEE E. Bayram, “Wijsman summability through Orlicz Function Sequences”, MAUN Fen Bil. Dergi., vol. 12, no. 2, pp. 100–105, 2024, doi: 10.18586/msufbd.1551410.
ISNAD Bayram, Erdal. “Wijsman Summability through Orlicz Function Sequences”. Mus Alparslan University Journal of Science 12/2 (December 2024), 100-105. https://doi.org/10.18586/msufbd.1551410.
JAMA Bayram E. Wijsman summability through Orlicz Function Sequences. MAUN Fen Bil. Dergi. 2024;12:100–105.
MLA Bayram, Erdal. “Wijsman Summability through Orlicz Function Sequences”. Mus Alparslan University Journal of Science, vol. 12, no. 2, 2024, pp. 100-5, doi:10.18586/msufbd.1551410.
Vancouver Bayram E. Wijsman summability through Orlicz Function Sequences. MAUN Fen Bil. Dergi. 2024;12(2):100-5.