Research Article
BibTex RIS Cite

Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers

Year 2025, Volume: 13 Issue: 1, 7 - 14, 30.06.2025
https://doi.org/10.18586/msufbd.1612185

Abstract

The effect of adding stainless steel scourers to absorber surfaces on solar air heater heat transfer efficiency is investigated in this study. The energy and exergy efficiency of collectors with different absorber surface layouts were assessed by a comparative analysis. The absorber surfaces were categorized into three types based on the density of scourers: flat non-porous Type III (T3), less complex porous Type II (T2), and complex porous Type I (T1). Experiments performed at air mass flow rates of 0.025 kg/s and 0.05 kg/s, measuring parameters such as ambient temperature, absorber surface temperature, solar radiation, air inlet and outlet temperatures.At a flow rate of 0.025 kg/s, energy efficiencies of T1, T2, and T3 were 45%, 42%, and 36%, respectively. These efficiencies improved to 55%, 49%, and 46% when the flow rate was increased to 0.05 kg/s. A similar trend was seen in exergy efficiencies, which were 50%, 48%, and 40% for T1, T2, and T3 at 0.025 kg/s, increasing to 66%, 55%, and 52% at 0.05 kg/s.The findings indicated that the flat plate collector (T3) exhibited the lowest efficiency and the highest irreversibility. Additionally, an increase in airflow rate enhanced overall collector performance. These results underscore the significant advantages of porous absorber surfaces, especially the intricate porous design of T1, in improving the energy and exergy efficiencies of solar energy collectors.

Ethical Statement

I declare that all processes of the study are in accordance with research and publication ethics, and that I comply with ethical rules and scientific citation principles.

References

  • [1] Varun, Saini R. P., Singal S. K. A review on roughness geometry used in solar air heaters, Solar Energy, 81, 1340–1350,2007.
  • [2] Ekramian E., Etemad S. Gh., Haghshenasfard M. Numerical analysis of heat transfer performance of flat plate solar collectors, Journal of Fluid Flow Heat and Mass Transfer, 1, 38–46,2014.
  • [3] Kalogirou S. A. Environmental benefits of domestic solar energy systems. Solar Energy, 85(1), 118-133, 2011.
  • [4] Pathak P. K., Chandra P., Raj G. Energy and exergy analysis of corrugated plate solar collector by forced convection using two different absorber plate material, Heat and Mass Transfer, 57,565–581,2021.
  • [5] Esen H., Ozgen F., Esen M., Sengur A. Artificial neural network and wavelet neural network approaches for modelling of a solar air heater, Expert Systems with Applications, 36, 11240–11248,2009.
  • [6] Gürtürk M., Benli H., Ertürk N. K. Effects of different parameters on energy – exergy and power conversion efficiency of PV modules, Renewable and Sustainable Energy Reviews, 92,426–439,2018.
  • [7] Darici S., Kilic A. Comparative study on the performances of solar air collectors with trapezoidal corrugated and flat absorber plates, Heat and Mass Transfer, 24, 1–1, 2020.
  • [8] Facão J. Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements, Solar Energy,120,104–112,2015.
  • [9] Avargani V. M., Zendehboudi S., Rahimi A., Soltani S. Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles, Applied Thermal Engineering, 203, 117907,2022.
  • [10] Esen H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates, Building and Environment, 43, 1046–1054, 2008.
  • [11] Akpinar E., Koçyiğit F. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates, Applied Energy, 87, 3438–3450, 2010.
  • [12] Ozgen F., Esen M., Esen H. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans, Renewable Energy, 34, 2391–2398, 2009.
  • [13] Arabhosseini A., Samimi-Akhijahani H., Motahayyer M. Increasing the energy and exergy efficiencies of a collector using porous and recycling system, Renewable Energy, 132, 308–325,2019.
  • [14] Ucar A., Inalli M. Thermal and exergy analysis of solar air collectors with passive augmentation techniques, International Communications in Heat and Mass Transfer, 33, 1281–1290, 2006.
  • [15] Albizzati E. D. Solar collector for air heater, International Solar nEnergy Society, 22, 663–666,2000.
  • [16] Karim M. A., Hawlader M. N. A. Performance investigation of flat plate, v-corrugated and finned air collectors,Energy,31,452–470,2006.
  • [17] Moummi N., Youcef Ali S., Moummi A., Desmons J. Y. Energy analysis of a solar air collector with rows of fins, RenewableEnergy,29,2053–2064,2004.
  • [18] Yeh H. M., Ho C. D., Hou J. Z. The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate, Energy, 24, 857–871, 1999.
  • [19] Sahu M. M., Bhagoria J. L. Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater, Renewable Energy, 30, 2057–2073, 2005.
  • [20] Alvarez G., Arce J., Lira L., Heras M. R. Thermal performance of an air solar collector with an absorber plate made of recyclable aluminium cans, Solar Energy, 77, 107–113,2004.
  • [21] Kreith F., Kreider J. F. Principles of Solar Engineering, McGraw-Hill,NewYork,1978.
  • [22] Ghoneim A. A. Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb, International Journal of Thermal Sciences, 44, 95–105,2005.
  • [23] Ozgen F., Dayan A. Energy analysis of a solar air heater with an absorber plate made of porous material, Thermal Science,25,333–337,2021.
  • [24] Can O. F., Celik N., Ozgen F., Kistak C., Taskiran A. Experimental and numerical analysis of the solar collector with stainless steel scourers added to the absorber surface, Applied Sciences-Basel, 14, Article number: 2629,2024.
  • [25] Torres-Reyes E., Navarrete-Gonzalez J. J., Zaleta-Aguilar A., Cervantes-de Gortari J. G. Optimal process of solar to thermal energy conversion and design of irreversible flat-plate solar collectors, Energy, 28, 99–113,2003.
  • [26] Kline S. J., McClintock F. A. Describing uncertainties in single-sample experiments, Mechanical Engineering, 75, 3–8, 1953.
  • [27] Ali, M. H., Kurjak, Z., Beke, J. The Effect of Forced Airflow Inside the Solar Chimney on the Photovoltaic Module Power Generation. 29th Workshop on Energy and Environment, 2023.
  • [28] Hroub, Q., Drira, Y., Jribi, S., Bentaher, H. Advancing Solar Thermal Energy Systems: Comparative Study of Low-Cost Receivers in Parabolic Trough Collectors. Journal of Renewable and Sustainable Energy, 16(6), 063704, 2024.
  • [29] Sanaka, S. P., Mareedu, N. D., et al. Characterization of Sustainable Solar Absorbing Materials for Solar Thermal Applications. IEEE Xplore, 2024.

Paslanmaz Çelik Telli Bir Yutucu Plakanın Enerji ve Ekserji Analizi

Year 2025, Volume: 13 Issue: 1, 7 - 14, 30.06.2025
https://doi.org/10.18586/msufbd.1612185

Abstract

Bu çalışmada, paslanmaz çelik tellerin güneş hava ısıtıcılarının emici yüzeylerine eklenmesinin ısı transfer verimliliği üzerindeki etkisi incelenmiştir. Farklı emici yüzey düzenine sahip kolektörlerin enerji ve ekserji verimlilikleri karşılaştırmalı bir analizle değerlendirilmiştir. Emici yüzeyler, tellerin yoğunluğuna göre üç tipe ayrılmıştır: düz, gözeneksiz Tip III (T3), daha az karmaşık gözenekli Tip II (T2) ve karmaşık gözenekli Tip I (T1). Deneyler, 0,025 kg/s ve 0,05 kg/s hava kütle akış hızlarında gerçekleştirilmiş; çevre sıcaklığı, emici yüzey sıcaklığı, güneş ışınımı, hava giriş-çıkış sıcaklıkları gibi parametreler ölçülmüştür.0,025 kg/s akış hızında T1, T2 ve T3 için enerji verimlilikleri sırasıyla %45, %42 ve %36 olarak elde edilmiştir. Akış hızı 0,05 kg/s’ye çıkarıldığında bu verimlilikler %55, %49 ve %46’ya yükselmiştir. Benzer bir eğilim ekserji verimliliklerinde de gözlenmiştir; 0,025 kg/s’de T1, T2 ve T3 için ekserji verimlilikleri sırasıyla %50, %48 ve %40 iken, 0,05 kg/s’de bu değerler %66, %55 ve %52’ye ulaşmıştır. Sonuçlar, düz plaka kolektörünün (T3) en düşük verimliliği ve en yüksek geri dönüşümsüzlüğü sergilediğini göstermiştir. Ayrıca, hava akış hızındaki artışın kolektör performansını genel olarak iyileştirdiği tespit edilmiştir. Bu bulgular, özellikle karmaşık gözenekli T1 tasarımının, güneş enerjisi kolektörlerinin enerji ve ekserji verimliliklerini artırmada önemli avantajlar sunduğunu ortaya koymaktadır.

Ethical Statement

Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.

References

  • [1] Varun, Saini R. P., Singal S. K. A review on roughness geometry used in solar air heaters, Solar Energy, 81, 1340–1350,2007.
  • [2] Ekramian E., Etemad S. Gh., Haghshenasfard M. Numerical analysis of heat transfer performance of flat plate solar collectors, Journal of Fluid Flow Heat and Mass Transfer, 1, 38–46,2014.
  • [3] Kalogirou S. A. Environmental benefits of domestic solar energy systems. Solar Energy, 85(1), 118-133, 2011.
  • [4] Pathak P. K., Chandra P., Raj G. Energy and exergy analysis of corrugated plate solar collector by forced convection using two different absorber plate material, Heat and Mass Transfer, 57,565–581,2021.
  • [5] Esen H., Ozgen F., Esen M., Sengur A. Artificial neural network and wavelet neural network approaches for modelling of a solar air heater, Expert Systems with Applications, 36, 11240–11248,2009.
  • [6] Gürtürk M., Benli H., Ertürk N. K. Effects of different parameters on energy – exergy and power conversion efficiency of PV modules, Renewable and Sustainable Energy Reviews, 92,426–439,2018.
  • [7] Darici S., Kilic A. Comparative study on the performances of solar air collectors with trapezoidal corrugated and flat absorber plates, Heat and Mass Transfer, 24, 1–1, 2020.
  • [8] Facão J. Optimization of flow distribution in flat plate solar thermal collectors with riser and header arrangements, Solar Energy,120,104–112,2015.
  • [9] Avargani V. M., Zendehboudi S., Rahimi A., Soltani S. Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles, Applied Thermal Engineering, 203, 117907,2022.
  • [10] Esen H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates, Building and Environment, 43, 1046–1054, 2008.
  • [11] Akpinar E., Koçyiğit F. Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates, Applied Energy, 87, 3438–3450, 2010.
  • [12] Ozgen F., Esen M., Esen H. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans, Renewable Energy, 34, 2391–2398, 2009.
  • [13] Arabhosseini A., Samimi-Akhijahani H., Motahayyer M. Increasing the energy and exergy efficiencies of a collector using porous and recycling system, Renewable Energy, 132, 308–325,2019.
  • [14] Ucar A., Inalli M. Thermal and exergy analysis of solar air collectors with passive augmentation techniques, International Communications in Heat and Mass Transfer, 33, 1281–1290, 2006.
  • [15] Albizzati E. D. Solar collector for air heater, International Solar nEnergy Society, 22, 663–666,2000.
  • [16] Karim M. A., Hawlader M. N. A. Performance investigation of flat plate, v-corrugated and finned air collectors,Energy,31,452–470,2006.
  • [17] Moummi N., Youcef Ali S., Moummi A., Desmons J. Y. Energy analysis of a solar air collector with rows of fins, RenewableEnergy,29,2053–2064,2004.
  • [18] Yeh H. M., Ho C. D., Hou J. Z. The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate, Energy, 24, 857–871, 1999.
  • [19] Sahu M. M., Bhagoria J. L. Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater, Renewable Energy, 30, 2057–2073, 2005.
  • [20] Alvarez G., Arce J., Lira L., Heras M. R. Thermal performance of an air solar collector with an absorber plate made of recyclable aluminium cans, Solar Energy, 77, 107–113,2004.
  • [21] Kreith F., Kreider J. F. Principles of Solar Engineering, McGraw-Hill,NewYork,1978.
  • [22] Ghoneim A. A. Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb, International Journal of Thermal Sciences, 44, 95–105,2005.
  • [23] Ozgen F., Dayan A. Energy analysis of a solar air heater with an absorber plate made of porous material, Thermal Science,25,333–337,2021.
  • [24] Can O. F., Celik N., Ozgen F., Kistak C., Taskiran A. Experimental and numerical analysis of the solar collector with stainless steel scourers added to the absorber surface, Applied Sciences-Basel, 14, Article number: 2629,2024.
  • [25] Torres-Reyes E., Navarrete-Gonzalez J. J., Zaleta-Aguilar A., Cervantes-de Gortari J. G. Optimal process of solar to thermal energy conversion and design of irreversible flat-plate solar collectors, Energy, 28, 99–113,2003.
  • [26] Kline S. J., McClintock F. A. Describing uncertainties in single-sample experiments, Mechanical Engineering, 75, 3–8, 1953.
  • [27] Ali, M. H., Kurjak, Z., Beke, J. The Effect of Forced Airflow Inside the Solar Chimney on the Photovoltaic Module Power Generation. 29th Workshop on Energy and Environment, 2023.
  • [28] Hroub, Q., Drira, Y., Jribi, S., Bentaher, H. Advancing Solar Thermal Energy Systems: Comparative Study of Low-Cost Receivers in Parabolic Trough Collectors. Journal of Renewable and Sustainable Energy, 16(6), 063704, 2024.
  • [29] Sanaka, S. P., Mareedu, N. D., et al. Characterization of Sustainable Solar Absorbing Materials for Solar Thermal Applications. IEEE Xplore, 2024.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Filiz Özgen 0000-0003-2278-2093

Ayşe Dayan 0000-0001-7056-5574

Uğurcan Yardımcı 0000-0001-6511-4058

Celal Kıstak 0000-0003-4621-5405

Nevin Çelik 0000-0003-2456-5316

Early Pub Date June 24, 2025
Publication Date June 30, 2025
Submission Date January 3, 2025
Acceptance Date April 29, 2025
Published in Issue Year 2025 Volume: 13 Issue: 1

Cite

APA Özgen, F., Dayan, A., Yardımcı, U., … Kıstak, C. (2025). Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers. Mus Alparslan University Journal of Science, 13(1), 7-14. https://doi.org/10.18586/msufbd.1612185
AMA Özgen F, Dayan A, Yardımcı U, Kıstak C, Çelik N. Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers. Mus Alparslan University Journal of Science. June 2025;13(1):7-14. doi:10.18586/msufbd.1612185
Chicago Özgen, Filiz, Ayşe Dayan, Uğurcan Yardımcı, Celal Kıstak, and Nevin Çelik. “Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers”. Mus Alparslan University Journal of Science 13, no. 1 (June 2025): 7-14. https://doi.org/10.18586/msufbd.1612185.
EndNote Özgen F, Dayan A, Yardımcı U, Kıstak C, Çelik N (June 1, 2025) Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers. Mus Alparslan University Journal of Science 13 1 7–14.
IEEE F. Özgen, A. Dayan, U. Yardımcı, C. Kıstak, and N. Çelik, “Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers”, Mus Alparslan University Journal of Science, vol. 13, no. 1, pp. 7–14, 2025, doi: 10.18586/msufbd.1612185.
ISNAD Özgen, Filiz et al. “Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers”. Mus Alparslan University Journal of Science 13/1 (June2025), 7-14. https://doi.org/10.18586/msufbd.1612185.
JAMA Özgen F, Dayan A, Yardımcı U, Kıstak C, Çelik N. Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers. Mus Alparslan University Journal of Science. 2025;13:7–14.
MLA Özgen, Filiz et al. “Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers”. Mus Alparslan University Journal of Science, vol. 13, no. 1, 2025, pp. 7-14, doi:10.18586/msufbd.1612185.
Vancouver Özgen F, Dayan A, Yardımcı U, Kıstak C, Çelik N. Energy And Exergy Analysis Of An Absorber Plate With Stainless Steel Scourers. Mus Alparslan University Journal of Science. 2025;13(1):7-14.