Araştırma Makalesi
BibTex RIS Kaynak Göster

Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi

Yıl 2018, Cilt: 14 Sayı: 14, 31 - 43, 21.09.2018

Öz

Mikron altı tane elde edilmesinde yüksek güç yoğunluğu ve daha iyi öğütme verimlerinden dolayı karıştırmalı bilyalı değirmenlerin oldukça etkili olduğu bilinmektedir. Bu değirmenler yüksek ürün inceliği talep edilen boya, kâğıt, plastik ve ilaç gibi sektörlerde yaygın olarak kullanılmaktadır.
Bu çalışmada, barit (BaSO4, d50=2,83 µm) yaş öğütülmesi üzerine karıştırmalı bilyalı değirmende yüksek yoğunluğa sahip zirkon (ZrO2) bilya tasarımıyla sistematik bir çalışma gerçekleştirilmiş ve baritin mikron altı boyuta öğütülmesinde, öğütme parametrelerinin etkileri araştırılmıştır. İncelenen öğütme parametreleri; bilya miktarı (bilya doluluk oranı), pülp yoğunluğu, bilya boyutu ve öğütme süresidir. Deneysel sonuçlar tüketilen enerji (kWh/t), ürün tane boyutu (d10, d50) ve kırılma oranı ilişkisi dikkate alınarak değerlendirilmiştir.
Gerçekleştirilen bir dizi deneysel çalışmalar sonucunda, barit için optimum koşullar, bilya doluluğu %60, pülp yoğunluğu %30, bilya boyutu 1 mm, öğütme süresi 120 dk olarak olarak tespit edilmiştir. Bu şartlarda ortalama tane boyutu (d50) 0,74 µm ürün elde edilmiştir.

Kaynakça

  • Altun, O., Benzer, H., Enderle, U., 2013. Effects of operating parameters on the efficiency of dry stirred milling. Minerals Engineering. 43–44, 58–66.
  • Bel Fadhel, H. ve Frances, C., 2001. Wet batch grinding of alumina hydrate in a stirred bead mill. Powder Technology. 119 (2–3), 257–268.
  • Celep, O., Alp, İ., Türk, T., 2008. İnce öğütme teknolojisinde karıştırmalı ortam değirmenleri ve cevher hazırlamadaki uygulamaları. İstanbul Yerbilimleri Dergisi. 21.
  • Farber, Y.B., Durant, B. ve Bedesi, N., 2011. Effect of media size and mechanical properties on milling efficiency and media consumption. Minerals Engineering. 24 (3–4), 367–372.
  • Fuerstenau, D.W. ve Kapur, P.C., 1994. A new approach to assessing the grindability of solids and the energy efficiency of grinding mills. Minerals and Metallurgical Processing. 11, 210–216.
  • Fuerstenau, D.W. ve Abouzeid, A.-Z.M., 2002. The energy efficiency of ball milling in comminution. International Journal of Mineral Processing. 67, 161-185.
  • He, M. ve Forssberg, E., 2007. Influence of slurry rheology on stirred media milling of quartzite. Int. J. Mineral Processing. 84, 240-251.
  • Kwade, A., Blecher, L. ve Schwedes, J., 1996. Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution. Powder Technology. 86 (1), 69–76.
  • Kwade, A., 1999. Wet comminution in stirred media mills-research and its practical Application. Powder Technology. 105, 14-20.
  • Liu, Y.,Yu, Z., Zhou, S. ve Wu, L., 2006. De-agglomeration and dispersion of nano TiO2 in an agitator bead mill. Journal of Dispersion Science and Technology. 27, 983-990.
  • Ohenoja, K., Illikainen, M. ve Niinimäki, J., 2013. Effect of operational parameters and stress energies on the particle size distribution of TiO2 pigment in stirred media milling. Powder Technology. 234, 91–96.
  • Patel, C.M., Murthy, Z.V.P. ve Chakraborty, M. 2012. Effects of operating parameters on the production of barium sulfate nanoparticles in stirred media mill. J. Ind. Eng. Chem. 18 (4), 1450–1457.
  • Patel, C.M., Chakraborty, M. ve Murthy, Z.V.P., 2014. Enhancement of stirred media mill performance by a new mixed media grinding strategy. Journal of Industrial and Engineering Chemistry. 20 (4), 2111–2118.
  • Quattara, S. ve Frances, C., 2014. Grinding of calcite suspensions in a stirred media mill: Effect of operational parameters on the product quality and the spesific energy. Powder Technology. 255, 89-97.
  • Rose, H.E. ve Sullivan, R.M.E., 1958. A treatise on the internal mechanics of ball, tube and rod mills. Chemical Publishing Company. New York, NY.
  • Rydin, R.W., Maurice, D. ve Courtney, T.H., 1993. Milling dynamics: Part 1. Attritor dynamics: results of a cinematographic study. Metall. Trans. 24A, 175–185.
  • Sabah, E., Özdemir, O. ve Koltka, S., 2013. Effect of ball mill grinding parameters of hydrated lime fine grinding on consumed energy. Advanced Powder Technology. 24, 647-652.
  • Sakthivel, S. ve Prasanna Venkatesh, R., 2012. Solid state synthesis of nano- mineral particles. International Journal of Mining Science and Technology. 22, 651-655.
  • Sivamohan, R. ve Vachot, P., 1990. A comparative study of stirred and vibratory mills for the fine grinding of muscovite, wollastonite and kaolinite. Powder Technology. 61 (2), 119–129.
  • Stenger, F., Mende, S., Schwedes, J. ve Peukert, W., 2005. Nanomilling in stirred media mills. Chemical Engineering Science. 60 (16), 4557–4565.
  • Wang, Y. ve Forssberg, E., 2000. Product size distribution in stirred media mills. Minerals Engineering. 13, 4, 459-465.
  • Zheng, J., Harris, C.C. ve Somasundaran, P., 1996. A study on grinding and energy input in stirred media mills. Powder Technology. 86 (2), 171–178.
Yıl 2018, Cilt: 14 Sayı: 14, 31 - 43, 21.09.2018

Öz

Kaynakça

  • Altun, O., Benzer, H., Enderle, U., 2013. Effects of operating parameters on the efficiency of dry stirred milling. Minerals Engineering. 43–44, 58–66.
  • Bel Fadhel, H. ve Frances, C., 2001. Wet batch grinding of alumina hydrate in a stirred bead mill. Powder Technology. 119 (2–3), 257–268.
  • Celep, O., Alp, İ., Türk, T., 2008. İnce öğütme teknolojisinde karıştırmalı ortam değirmenleri ve cevher hazırlamadaki uygulamaları. İstanbul Yerbilimleri Dergisi. 21.
  • Farber, Y.B., Durant, B. ve Bedesi, N., 2011. Effect of media size and mechanical properties on milling efficiency and media consumption. Minerals Engineering. 24 (3–4), 367–372.
  • Fuerstenau, D.W. ve Kapur, P.C., 1994. A new approach to assessing the grindability of solids and the energy efficiency of grinding mills. Minerals and Metallurgical Processing. 11, 210–216.
  • Fuerstenau, D.W. ve Abouzeid, A.-Z.M., 2002. The energy efficiency of ball milling in comminution. International Journal of Mineral Processing. 67, 161-185.
  • He, M. ve Forssberg, E., 2007. Influence of slurry rheology on stirred media milling of quartzite. Int. J. Mineral Processing. 84, 240-251.
  • Kwade, A., Blecher, L. ve Schwedes, J., 1996. Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution. Powder Technology. 86 (1), 69–76.
  • Kwade, A., 1999. Wet comminution in stirred media mills-research and its practical Application. Powder Technology. 105, 14-20.
  • Liu, Y.,Yu, Z., Zhou, S. ve Wu, L., 2006. De-agglomeration and dispersion of nano TiO2 in an agitator bead mill. Journal of Dispersion Science and Technology. 27, 983-990.
  • Ohenoja, K., Illikainen, M. ve Niinimäki, J., 2013. Effect of operational parameters and stress energies on the particle size distribution of TiO2 pigment in stirred media milling. Powder Technology. 234, 91–96.
  • Patel, C.M., Murthy, Z.V.P. ve Chakraborty, M. 2012. Effects of operating parameters on the production of barium sulfate nanoparticles in stirred media mill. J. Ind. Eng. Chem. 18 (4), 1450–1457.
  • Patel, C.M., Chakraborty, M. ve Murthy, Z.V.P., 2014. Enhancement of stirred media mill performance by a new mixed media grinding strategy. Journal of Industrial and Engineering Chemistry. 20 (4), 2111–2118.
  • Quattara, S. ve Frances, C., 2014. Grinding of calcite suspensions in a stirred media mill: Effect of operational parameters on the product quality and the spesific energy. Powder Technology. 255, 89-97.
  • Rose, H.E. ve Sullivan, R.M.E., 1958. A treatise on the internal mechanics of ball, tube and rod mills. Chemical Publishing Company. New York, NY.
  • Rydin, R.W., Maurice, D. ve Courtney, T.H., 1993. Milling dynamics: Part 1. Attritor dynamics: results of a cinematographic study. Metall. Trans. 24A, 175–185.
  • Sabah, E., Özdemir, O. ve Koltka, S., 2013. Effect of ball mill grinding parameters of hydrated lime fine grinding on consumed energy. Advanced Powder Technology. 24, 647-652.
  • Sakthivel, S. ve Prasanna Venkatesh, R., 2012. Solid state synthesis of nano- mineral particles. International Journal of Mining Science and Technology. 22, 651-655.
  • Sivamohan, R. ve Vachot, P., 1990. A comparative study of stirred and vibratory mills for the fine grinding of muscovite, wollastonite and kaolinite. Powder Technology. 61 (2), 119–129.
  • Stenger, F., Mende, S., Schwedes, J. ve Peukert, W., 2005. Nanomilling in stirred media mills. Chemical Engineering Science. 60 (16), 4557–4565.
  • Wang, Y. ve Forssberg, E., 2000. Product size distribution in stirred media mills. Minerals Engineering. 13, 4, 459-465.
  • Zheng, J., Harris, C.C. ve Somasundaran, P., 1996. A study on grinding and energy input in stirred media mills. Powder Technology. 86 (2), 171–178.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Diler Katırcıoğlu Bayel

Yayımlanma Tarihi 21 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 14 Sayı: 14

Kaynak Göster

APA Katırcıoğlu Bayel, D. (2018). Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi. MT Bilimsel, 14(14), 31-43.
AMA Katırcıoğlu Bayel D. Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi. MT Bilimsel. Eylül 2018;14(14):31-43.
Chicago Katırcıoğlu Bayel, Diler. “Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi”. MT Bilimsel 14, sy. 14 (Eylül 2018): 31-43.
EndNote Katırcıoğlu Bayel D (01 Eylül 2018) Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi. MT Bilimsel 14 14 31–43.
IEEE D. Katırcıoğlu Bayel, “Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi”, MT Bilimsel, c. 14, sy. 14, ss. 31–43, 2018.
ISNAD Katırcıoğlu Bayel, Diler. “Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi”. MT Bilimsel 14/14 (Eylül 2018), 31-43.
JAMA Katırcıoğlu Bayel D. Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi. MT Bilimsel. 2018;14:31–43.
MLA Katırcıoğlu Bayel, Diler. “Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi”. MT Bilimsel, c. 14, sy. 14, 2018, ss. 31-43.
Vancouver Katırcıoğlu Bayel D. Baritin Yaş Öğütülmesinde Öğütme Parametrelerinin Etkisi. MT Bilimsel. 2018;14(14):31-43.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors transfer copyright to the publisher for the accepted submissions.