Year 2020, Volume , Issue 18, Pages 97 - 118 2020-07-10

Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon)

Ebu Bekir AYGAR [1] , Candan GÖKÇEOĞLU [2]


Bu çalışmada, Trabzon Şehir Geçişi Kanuni Bulvarı projesi kapsamında planlanan ve toplam uzunluğu 292 m olan Çukurçayır-2 Tüneli destek sisteminin tasarımı amaçlanmıştır. Çukurçayır 2 tüneli 3 şeritli ve çift tüp olup, proje kapsamında sağ tüp Km:12+726 - 12+934 arasında, sol tüp ise Km:12+748 - 13+000 arasında yer almaktadır. Tünel güzergahı tamamen kil, siltli kumlu kil, kil/çakıl ve killi çakıllı kum birimleri içerisinde kalmaktadır. Tünel örtü kalınlığı en fazla 25 m olup, sığ tünel özelliğindedir. Ayrıca tünel güzergahı boyunca yüzeyde konutlar bulunmaktadır. Tünelin sıkışabilen ve şişen killer içinde açılması sebebi ile destek sistemi tasarımı açısından ciddi öneme sahiptir. Bu tür killi ve kumlu birimlerde en önemli stabilite sorunlarının ayna ve tavan stabilitesi olacağı bilinmektedir. Buna ek olarak tünelin uzun dönemde, zeminin sıkışabilme özelliklerine bağlı olarak destek sisteminin göstereceği davranış da ayrı bir öneme sahiptir. Bununla birlikte, tünelin zemin içinden geçmesi ve örtü yüksekliğin sığ olması sebebi ile uzun dönem stabilitesi de bu çalışma kapsamında değerlendirilmektedir. Sonuç olarak, tünelcilik açısından özel problemlere sahip olan Çukurçayır – 2 Tünelinin tasarımı sırasında karşılaşılan güçlükler ve bunlara ilişkin çözüm önerileri bu çalışma kapsamında sunulmaktadır.
Sığ örtü, Büyük açıklıklı tünel, NATM, Zayıf zemin
  • Akgün, H., Muratlı, SW., Koçkar, M.K., 2014. Geotechnical investigations and preliminary support design for the Geçilmez tunnel: A case study along the Black Sea coastal highway, Giresun, northern Turkey. Tunnelling and Underground Space Technology, 40, 277 – 299.
  • Aksoy, C.O., Ogul, K., Topal, I., Ozer, S.C., Ozacar, V., Posluk, E., 2012. Numerical modeling of non-deformable support in swelling and squeezing rock. International Journal of Rock Mechanics and Mining Sciences, 52, 61-70.
  • Aksoy, C.O., Uyar, G.G., Posluk, E., Ogul, K., Topal, I., Kucuk, K., 2016. Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway Project. 58 (5), 869-886.
  • Assis, A. 2013. Urban Tunnelling Constraints and Challenges. Master Course on Tunnels and Underground Space, 43p.
  • Astore G., Pradella G., 2009. The new Anatolian Metro of Istanbul. GEODATA, Tunnelling in urban area, Zurich, 18.
  • Aygar, E.B., 2000. A Critical Approach to the New Austrian Tunneling Method in Bolu Tunnels. MSc Tezi, Hacettepe Universitesi, Maden Mühendisliği Bölümü, Ankara, 276p.
  • Aygar, E.B., 2007. Investigation of the Bolu Tunnel Stability By Means of Static and Dynamic Analyses. PhD Tezi, Hacettepe Universitesi, Maden Mühendisliği Bölümü, Ankara, 273p.
  • Aygar, E.B., Gokceoglu, C., 2019a. Ankara-İstanbul High Speed Railway Projects, The Problems Encpuntered at T13 Tunnel Fault Zone and Solution Suggestions. Proceedings of the 26th International Mining Congress and Exhibition of Turkey, 197-205.
  • Aygar, E.B., Gokceoglu, C., 2019b. Ankara-Istanbul High Speed Railway Project, T26 Tunnel Design and Evaluation of Supports Systems, Proceedings of the 26th International Mining Congress and Exhibition of Turkey, 206-218.
  • Aygar, E.B., Gokceoglu, C., 2020. Problems Encountered during a Railway Tunnel Excavation in Squeezing and Swelling Materails and Possible Engineering Measures: A Case Study from Turkey. Sustainability, 2020, 12, 1166.
  • Barton, N.R., Lien, R. and Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189-239.
  • Barton, N., Løset, F., Lien, R. and Lunde, J. 1980. Application of the Q-system in design decisions. In Subsurface space, (ed. M. Bergman) 2, 553-561. New York: Pergamon.
  • Bieniawski, Z.T. 1973. Engineering classification of jointed rock masses. Trans S. Afr. Inst. Civ. Engrs 15, 335-344.
  • Bieniawski, Z.T. 1976. Rock mass classification in rock engineering. In Exploration for rock engineering, proc. of the Symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema.
  • Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications. Wiley, New York.
  • Das, R., Singh, P.K., Kainthola, A., Panthee, S., 2017. Numerical analysis of surface subsidence in asymmetric parallel highway tunnels. Journal of Rock Mechanics and Geotechnical Engineering, 9, 170-179.
  • Federal Highway Administration, 2009. Technical Manual for Design and Construction of Road Tunnels -Civil Elements, 702p.
  • Fugro Sial, 2015a. Çukurçayır 2 Tüneli Tünel Proje Hesap Raporu, Ankara.
  • Fugro Sial, 2015b. Çukurçayır 2 Tüneli Jeolojik-Jeoteknik Etüd Raporu, Ankara.
  • Geoconsult ZT GmbH, 1993. Technical Specification for Civil Underground Tunnel Works, Prepared for the General Directorate of Highways Republic of Turkey, Austria.
  • Grimstad, E., Barton, N. 1993. Updating the Q-System for NMT. Proc. int. symp. on sprayed concrete - modern use of wet mix sprayed concrete for underground support, Fagernes. 46-66. Oslo: Norwegian Concrete Assn.
  • Gupta, S.K. 2018. Foreseen Challenges in Underground Tunneling For Mumbai Metro Line 3. Mumbai Metro Rail Corporation Ltd, 48p.
  • Hashash, Y. M. A., Hook, J J., Schmidt, B., Yao, J.I.C., 2001. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology, 16, 247-293.
  • Hoek, E., 2000. Big tunnels in bad rock, 2000 Terzaghi lecture. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 127(9), 726-740. Hoek, E., 2012. Alternative ground control strategies in underground construction, Practices And Trends For Financing And Contracting Tunnels and Underground Works.
  • Hoek, E., Brown, E.T., 1980. Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, 106, 1013-1035.
  • Hoek, E., Brown, E.T., 1997. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci., 34 (8), 1165-1186.
  • Hoek, E., Diederichs, M.S., 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics & Mining Sciences, 43, 203–215.
  • Hoek, E., Guevara, R., 2009. Overcoming squeezing in the Yacambú-Quibor tunnel, Venezuela. Rock Mechanics and Rock Engineering, 42 (2), 389 - 418.
  • Isık, S., Ozben, M., 2007. Assessment of deformation effects of 12 November 1999 Düzce earthquake on Bolu tunnels and seismic design. In: Proceedings of the Sixth National Conference on Earthquake Engineering. Istanbul, Turkey.
  • John, C.M., Zaharah T.F., 1987. A seismic Design of Underground Structures. Tunneling and Underground Space Technology, 2, 165-197.
  • Karayolları Genel Müdürlüğü (KGM), 2014. Araştırma Mühendislik Hizmetleri Teknik Şartnamesi, T.A.D.B, Teknik Araştırma Dairesi Başkanlığı.
  • Karlsson, R., Vieberg, L., 1967. Ratio cu/p in relation to liquid limit and plasticity index with special reference to Swedish clays. Proc. Geotech. Conf, Oslo, Norway, Vol 1.
  • Koçkar, M.K., Akgün, H., 2003. Methodology for tunnel and portal support design in mixed limestone, schist and phyllite conditions: a case study in Turkey. International Journal of Rock Mechanics & Mining Sciences, 40, 173 – 196.
  • Komu, M.P., Guney, U., Kilickaya, T.E., Gokceoglu, C., 2020. Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey). Geotech Geol Eng, 38, 1237–1254.
  • Kovari, K., Ramoni M., 2004. Urban Tunnelling in Soft Ground Using TBM’s. International Congress on Mechanized Tunnelling:Challenging Case Histories Politecnico di Torino, Italy, 16-19 November 2004.
  • Köroğlu, F., Kandemir, R., 2017. Düzköy – Çayırbağı (Trabzon) yöresinin jeolojisi ve Kretase/Paleojen stratigrafisinde yeni sedimantolojik bulgular. 70. Türkiye Jeoloji Kurultayı Bildiri Özleri, 720-721.
  • Kulhawy, F.H., Mayne, P.W., 1990. Manual on Estimating Soil Properties for Foundation Design, EL-6800 Research Project 1493-6, Cornel University, US.
  • Li, T., 2012. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction. Bull Eng Geol Environ, 71, 297–308.
  • Moussaei, N., Sharifzadeh, M., Sahriar, K., Khosravi, M.H., 2019. A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modelling. Tunnelling and Underground Space Technology, 91, 103017.
  • ÖNORM B 2203, 1994. Österreichisches Normungsinstitut. ÖNORM B 2203 Untertagebauarbeiten –Werkvertragsnorm. Wien.
  • Rabcewicz, L.v., 1964a. The New Austrian Tunnelling Method, Part One. Water Power, 453-457.
  • Rabcewicz, L.v.,1964b. The New Austrian Tunnelling Method, Part Two. Water Power, 511-515.
  • Rabcewicz, L.v., 1965. The New Austrian Tunnelling Method, Part Three. Water Power, 19-24.
  • Rabcewicz L. V., Golser J., 1973. Principles of dimensioning the supporting system for the “New Austrian Tunnelling Method”. Water Power, 88-93.
  • RocScience, 2020. Phase2 8.0 Excavation & Support Design. https://rocscience.com/documents/ pdfs/uploads/8706.pdf.
  • Roy, N., Sarkar, R., 2017. A Review of seismic damage of mountain tunnels and probable failure mechanisms. Geotech Geol Eng, 35, 1–28.
  • Rubiralta, N., Hernandez, A., Ergut, S., Shaban, A., 2019. Logistic challenges for TBM operation during Sofia Metro Line 3 extension, Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art – Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London.
  • Schubert, W., 1996. Dealing with squeezing conditions in Alpine tunnels. Rock Mech. Rock Eng. 29(3), 145-153.
  • Skempton, A.W., Henkel, D.J., 1953. The Post Glacial Clays of the Thames Estuary at Tilbury and Shellhaven. 3rd ICSMFE vol 1, 302-308.
  • Sonmez, H., Ulusay, R., 1999. Modifications to the geological strength index (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Sciences, 36, 743-760.
  • Stroud, M. A., Butler, F. G., 1975. The Standard Penetration Test and the Engineering Properties of Glacial Materials. Proceedings of the symposium on Engineering Properties of glacial materials, Midlands, U.K.
  • Terzaghi, K. 1946. Rock defects and loads on tunnel supports. In Rock tunneling with steel supports, (eds R. V. Proctor and T. L. White) 1, 17-99. Youngstown, OH: Commercial Shearing and Stamping Company.
  • Terzaghi, K., Peck, R. B., Mesri, G., 1996. Soil Mechanics In Engineering Practice, John Wiley & Sons, Inc., Third Edition, New York.
  • Tokgozoglu, F., Isik, S., 2002. Bolu Dağı Tünelleri Proje ve Yapım Aşamaları. In: Proceedings of the International Conference/Workshop & Exhibition on Tunnelling & Underground Space Use.
  • Uyar, G.G., Aksoy, C.O., 2018. New Support Suggestions to High Swelling Clayey Rock Mass. Journal of Mining Science, 54, 617–627.
  • Zou, J., Chen, G., Qian, Z., 2019. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106, 1-17.
Primary Language tr
Subjects Engineering, Multidisciplinary
Journal Section Research Article
Authors

Author: Ebu Bekir AYGAR
Institution: FUGRO SIAL EARTH SCIENCES CONSULTANCY AND ENGINEERING
Country: Turkey


Author: Candan GÖKÇEOĞLU
Institution: HACETTEPE ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : July 10, 2020

Bibtex @research article { mtb767808, journal = {MT Bilimsel}, issn = {2146-9431}, address = {Kabil Cd. 1335 Sk No: 6 Daire: 8 Vadi Köşk Apt. Aşağı Öveçler Çankaya Ankara}, publisher = {Mayeb Basın Yayın İnsan Kaynakları Ltd. Şti.}, year = {2020}, volume = {}, pages = {97 - 118}, doi = {}, title = {Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon)}, key = {cite}, author = {Aygar, Ebu Bekir and Gökçeoğlu, Candan} }
APA Aygar, E , Gökçeoğlu, C . (2020). Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon) . MT Bilimsel , (18) , 97-118 . Retrieved from https://dergipark.org.tr/en/pub/mtb/issue/55984/767808
MLA Aygar, E , Gökçeoğlu, C . "Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon)" . MT Bilimsel (2020 ): 97-118 <https://dergipark.org.tr/en/pub/mtb/issue/55984/767808>
Chicago Aygar, E , Gökçeoğlu, C . "Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon)". MT Bilimsel (2020 ): 97-118
RIS TY - JOUR T1 - Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon) AU - Ebu Bekir Aygar , Candan Gökçeoğlu Y1 - 2020 PY - 2020 N1 - DO - T2 - MT Bilimsel JF - Journal JO - JOR SP - 97 EP - 118 VL - IS - 18 SN - 2146-9431- M3 - UR - Y2 - 2020 ER -
EndNote %0 MT Bilimsel Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon) %A Ebu Bekir Aygar , Candan Gökçeoğlu %T Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon) %D 2020 %J MT Bilimsel %P 2146-9431- %V %N 18 %R %U
ISNAD Aygar, Ebu Bekir , Gökçeoğlu, Candan . "Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon)". MT Bilimsel / 18 (July 2020): 97-118 .
AMA Aygar E , Gökçeoğlu C . Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon). MT Bilimsel. 2020; (18): 97-118.
Vancouver Aygar E , Gökçeoğlu C . Zayıf Zeminlerde Açılan Büyük Çaplı Bir Tünelin Destek Sistemi Tasarımı (Çukurçayır-2 Tüneli, Trabzon). MT Bilimsel. 2020; (18): 97-118.