Research Article
BibTex RIS Cite

Enhancing Students’ Perceptions of Problem-Solving Skills and STEM Attitudes with Arduino-Assisted Robotics Coding

Year 2025, Volume: 12 Issue: 2, 251 - 272
https://doi.org/10.21666/muefd.1717725

Abstract

This study investigates the impact of Arduino-assisted robotics coding activities on primary school students’ problem-solving skills and STEM attitudes. Utilizing a one-group pretest-posttest design, the research involved 49 fourth-grade students who participated in an 8-week intervention integrating coding and robotics into science instruction through the 5E learning model. Data were collected using a problem-solving perception scale and a STEM attitude scale, and analyzed with Wilcoxon Signed Ranks Tests due to non-normal data distribution. Results revealed a statistically significant improvement in students’ problem-solving skills and in the 21st century skills sub-dimension of STEM attitudes. However, no significant changes were found in attitudes toward mathematics, science, or engineering. The findings emphasize the effectiveness of experiential, hands-on learning activities in fostering cognitive and transversal competencies essential for 21st century learners. While the intervention enhanced problem-solving and collaboration abilities, a single short-term application was insufficient to shift disciplinary attitudes, suggesting a need for prolonged engagement. This study contributes to the growing body of literature supporting the integration of robotics and coding in STEM education and provides practical insights for educators seeking to implement technology-enhanced, constructivist pedagogies in primary school classrooms.

References

  • Akçay, A. O., Karahan, E., & Türk, S. (2019). Bilgi işlemsel düşünme becerileri odaklı okul sonrası kodlama surecinde ilkokul öğrencilerinin deneyimlerinin incelenmesi. Eskişehir Osmangazi Üniversitesi Türk Dünyası Uygulama ve Araştırma Merkezi (ESTUDAM) Eğitim Dergisi, 4(2), 38-50.
  • Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge.
  • Bilican, K. (2019). Erken çocukluk eğitiminde STEM. In S. Unlu-Cetin (Ed.), Erken çocukluk fen eğitiminde temel konular ve güncel yaklaşımlar (pp. 1-14). Nobel Yayıncılık.
  • Çakıcı, Y., & Özdemir, S. M. (2022). Bilgisayarsız kodlama eğitiminin ilkokul öğrencilerinin dikkatini toplama, problem çözme ve algoritmik düşünme becerileri üzerine etkisi. Uluslararası Bilim ve Eğitim Dergisi, 5(3), 235-254. https://doi.org/10.47477/ubed.1193031
  • Çakır, R., Korkmaz, O., İdil, O., & Uğur-Erdoğmus, F. (2021). The effect of robotic coding education on preschoolers’ problem solving and creative thinking skills. Thinking Skills and Creativity, 40, 100812. https://doi.org/10.1016/j.tsc.2021.100812
  • Chaudhary, R., Agrawal, A., & Sureka, A. (2016). Learning programming and computational thinking using Lego robotics: A study on elementary school students. arXiv preprint arXiv:1610.09610. https://doi.org/10.48550/arXiv.1610.09610
  • Chou, P. N. (2018). Skill development and knowledge acquisition cultivated by maker education: Evidence from Arduino-based educational robotics. EURASIA Journal of Mathematics, Science and Technology Education, 14(10), 1-15. https://doi.org/10.29333/ejmste/93483
  • Denissen, J. J. A., Zarrett, N. R., & Eccles, J. S. (2007). I like to do it, I’m able, and I know I am: Longitudinal couplings between domain specific achievement, self concept, and interest. Child Development, 78(2), 430–447.
  • Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press.
  • Dökmetaş, G. (2016). Arduino eğitim kitabı. Dikeyeksen Yayıncılık
  • Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.
  • Felicia, A., & Sharif, S. (2014). A review on educational robotics as assistive tools for learning mathematics and science. International Journal of Computer Science Trends and Technology, 2(2), 62-84.
  • Fernandez, G. P., & Cossio-Mercado, C. G. (2024, August). AelE: A versatile tool for teaching programming and robotics using Arduino. In 50th Latin American Conference on Informatics (L CLEI 2024), Bahía Blanca, Argentina. IEEE. https://doi.org/10.1109/CLEI64178.2024.10700288
  • Fesakis, G., & Serafeim, K. (2009). Influence of the familiarization with “scratch” on future teachers’ opinions and attitudes about programming and ICT in education. SIGCSE Bulletin, 41, 258-262.
  • Fokides, E., Papadakis, D., & Kourtis-Kazoullis, V. (2017). To drone or not to drone? Results of a pilot study in primary school settings. Journal of Computers in Education, 4(3), 339-353. https://doi.org/10.1007/s40692-017-0087-4
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). McGraw Hill.
  • Friday Institute for Educational Innovation (2012). Middle and High School STEM-Student Survey. Author. García-Tudela, P. A., & Marín-Marín, J. A. (2023). Use of Arduino in primary education: A systematic review. Education Sciences, 13(2), 134.
  • Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43.
  • Gültepe, A., (2018). Kodlama öğretimi yapan bilişim teknolojileri öğretmenleri gözüyle öğrenciler kodluyor. Uluslararası Liderlik Eğitimi Dergisi (ULED), 2(2), 50-60.
  • Güven, E. (2020). Ortaokul 5. sınıf fen öğretiminde Arduino destekli robotik kodlama etkinliklerinin kullanılması [Unpublished master's thesis]. Muğla Sıtkı Koçman Üniversitesi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Guven, G., Kozcu Cakir, N., Sulun, Y., Cetin, G., & Guven, E. (2020). Arduino-assisted robotics coding applications integrated into the 5E learning model in science teaching. Journal of Research on Technology in Education, 54(1), 108–126. https://doi.org/10.1080/15391523.2020.1812136
  • İnel Ekici, D., & Balım, A. G. (2013). Ortaokul öğrencileri için problem çözme becerilerine yönelik algı ölçeği: Geçerlilik ve güvenirlik çalışması. YYU Eğitim Fakültesi Dergisi, 10(1), 67-86.
  • Karahan, E. (2019). STEM eğitim yaklaşımı. In A. G. Balım (Ed.), Fen öğretiminde yenilikçi yaklaşımlar (pp. 171-185). Anı Yayıncılık.
  • Karahan, E., & Akçay, A. O. (2021). STEM eğitimi yaklaşımı. In K. Bilican & B. Şenler (Eds.), İlkokulda fen öğretimi (pp. 291-316). Vizetek Yayıncılık.
  • Kaya, S. Y. (2019). STEM tutum ölçeğinin geliştirilmesi ve ilkokul öğrencilerinin STEM'e yönelik tutumlarının çeşitli değişkenlere göre incelenmesi. [Unpublished master's thesis]. Zonguldak Bülent Ecevit Üniversitesi
  • Kozcu Çakır, N., & Güven, G. (2019). Effect of 5E learning model on academic achievement and attitude towards the science course: A meta-analysis study. Cukurova University Faculty of Education Journal, 48(2), 1111-1140. https://doi.org/10.14812/cuefd.544825
  • Meço, G., & Görgülü Arı, A. (2021). Arduino destekli STEM etkinliklerine yönelik ortaokul öğrencilerinin görüşleri. Uluslararası Sosyal Araştırmalar, 14(76), 498-507.
  • Nugent, G., Barker, B. S., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes. Journal of Research on Technology in Education, 42(4), 391–408.
  • Özcan, H., & Koca, E. (2018). STEM’e yönelik tutum ölçeğinin Türkçeye uyarlanması: Geçerlik ve güvenirlik çalışması. Hacettepe Universitesi Egitim Fakultesi Dergisi, 34(2), 387-401. https://doi.org/10.16986/HUJE.2018045061.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
  • Resnick, M., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.
  • Rosenthal, R. (1991). Applied social research methods: Meta-analytic procedures for social research. SAGE Publications Ltd.
  • Rushkoff, D. (2010). Program or be programmed: Ten commands for a digital age. OR Books.
  • Sahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309-322.
  • Sisman, B., Kucuk, S., & Yaman, Y. (2020). The effects of robotics training on children’s spatial ability and attitude toward STEM. International Journal of Social Robotics, 13, 379-389.
  • Sullivan, F. R. (2016). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 53(3), 431-455. https://doi.org/10.1002/tea.20238
  • Sümbül, H., & Çolak, H. (2020). Robotik kodlama eğitim setinin tasarlanması ve oluşturulması. Bilge International Journal of Science and Technology Research, 4(2), 103-109. https://doi.org/10.30516/bilgesci.672296
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using Multivariate Statistics (6th ed.). Pearson.
  • Tytler, R., & Osborne, J. (2012). Student attitudes and aspirations towards science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education (pp. 597-625). Springer International.
  • Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition Studies, 1(2), 42-64. https://doi.org/10.21623/1.1.2.4
  • Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st-century competences: Implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299-321.
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Arduino Destekli Robotik Kodlama ile Öğrencilerin Problem Çözme Becerilerine Yönelik Algılarının ve STEM Tutumlarının Geliştirilmesi

Year 2025, Volume: 12 Issue: 2, 251 - 272
https://doi.org/10.21666/muefd.1717725

Abstract

This study investigates the impact of Arduino-assisted robotics coding activities on primary school students’ problem-solving skills and STEM attitudes. Utilizing a one-group pretest-posttest design, the research involved 49 fourth-grade students who participated in an 8-week intervention integrating coding and robotics into science instruction through the 5E learning model. Data were collected using a problem-solving perception scale and a STEM attitude scale, and analyzed with Wilcoxon Signed Ranks Tests due to non-normal data distribution. Results revealed a statistically significant improvement in students’ problem-solving skills and in the 21st century skills sub-dimension of STEM attitudes. However, no significant changes were found in attitudes toward mathematics, science, or engineering. The findings emphasize the effectiveness of experiential, hands-on learning activities in fostering cognitive and transversal competencies essential for 21st century learners. While the intervention enhanced problem-solving and collaboration abilities, a single short-term application was insufficient to shift disciplinary attitudes, suggesting a need for prolonged engagement. This study contributes to the growing body of literature supporting the integration of robotics and coding in STEM education and provides practical insights for educators seeking to implement technology-enhanced, constructivist pedagogies in primary school classrooms.

References

  • Akçay, A. O., Karahan, E., & Türk, S. (2019). Bilgi işlemsel düşünme becerileri odaklı okul sonrası kodlama surecinde ilkokul öğrencilerinin deneyimlerinin incelenmesi. Eskişehir Osmangazi Üniversitesi Türk Dünyası Uygulama ve Araştırma Merkezi (ESTUDAM) Eğitim Dergisi, 4(2), 38-50.
  • Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge.
  • Bilican, K. (2019). Erken çocukluk eğitiminde STEM. In S. Unlu-Cetin (Ed.), Erken çocukluk fen eğitiminde temel konular ve güncel yaklaşımlar (pp. 1-14). Nobel Yayıncılık.
  • Çakıcı, Y., & Özdemir, S. M. (2022). Bilgisayarsız kodlama eğitiminin ilkokul öğrencilerinin dikkatini toplama, problem çözme ve algoritmik düşünme becerileri üzerine etkisi. Uluslararası Bilim ve Eğitim Dergisi, 5(3), 235-254. https://doi.org/10.47477/ubed.1193031
  • Çakır, R., Korkmaz, O., İdil, O., & Uğur-Erdoğmus, F. (2021). The effect of robotic coding education on preschoolers’ problem solving and creative thinking skills. Thinking Skills and Creativity, 40, 100812. https://doi.org/10.1016/j.tsc.2021.100812
  • Chaudhary, R., Agrawal, A., & Sureka, A. (2016). Learning programming and computational thinking using Lego robotics: A study on elementary school students. arXiv preprint arXiv:1610.09610. https://doi.org/10.48550/arXiv.1610.09610
  • Chou, P. N. (2018). Skill development and knowledge acquisition cultivated by maker education: Evidence from Arduino-based educational robotics. EURASIA Journal of Mathematics, Science and Technology Education, 14(10), 1-15. https://doi.org/10.29333/ejmste/93483
  • Denissen, J. J. A., Zarrett, N. R., & Eccles, J. S. (2007). I like to do it, I’m able, and I know I am: Longitudinal couplings between domain specific achievement, self concept, and interest. Child Development, 78(2), 430–447.
  • Denning, P. J., & Tedre, M. (2019). Computational thinking. MIT Press.
  • Dökmetaş, G. (2016). Arduino eğitim kitabı. Dikeyeksen Yayıncılık
  • Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.
  • Felicia, A., & Sharif, S. (2014). A review on educational robotics as assistive tools for learning mathematics and science. International Journal of Computer Science Trends and Technology, 2(2), 62-84.
  • Fernandez, G. P., & Cossio-Mercado, C. G. (2024, August). AelE: A versatile tool for teaching programming and robotics using Arduino. In 50th Latin American Conference on Informatics (L CLEI 2024), Bahía Blanca, Argentina. IEEE. https://doi.org/10.1109/CLEI64178.2024.10700288
  • Fesakis, G., & Serafeim, K. (2009). Influence of the familiarization with “scratch” on future teachers’ opinions and attitudes about programming and ICT in education. SIGCSE Bulletin, 41, 258-262.
  • Fokides, E., Papadakis, D., & Kourtis-Kazoullis, V. (2017). To drone or not to drone? Results of a pilot study in primary school settings. Journal of Computers in Education, 4(3), 339-353. https://doi.org/10.1007/s40692-017-0087-4
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education (8th ed.). McGraw Hill.
  • Friday Institute for Educational Innovation (2012). Middle and High School STEM-Student Survey. Author. García-Tudela, P. A., & Marín-Marín, J. A. (2023). Use of Arduino in primary education: A systematic review. Education Sciences, 13(2), 134.
  • Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43.
  • Gültepe, A., (2018). Kodlama öğretimi yapan bilişim teknolojileri öğretmenleri gözüyle öğrenciler kodluyor. Uluslararası Liderlik Eğitimi Dergisi (ULED), 2(2), 50-60.
  • Güven, E. (2020). Ortaokul 5. sınıf fen öğretiminde Arduino destekli robotik kodlama etkinliklerinin kullanılması [Unpublished master's thesis]. Muğla Sıtkı Koçman Üniversitesi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Guven, G., Kozcu Cakir, N., Sulun, Y., Cetin, G., & Guven, E. (2020). Arduino-assisted robotics coding applications integrated into the 5E learning model in science teaching. Journal of Research on Technology in Education, 54(1), 108–126. https://doi.org/10.1080/15391523.2020.1812136
  • İnel Ekici, D., & Balım, A. G. (2013). Ortaokul öğrencileri için problem çözme becerilerine yönelik algı ölçeği: Geçerlilik ve güvenirlik çalışması. YYU Eğitim Fakültesi Dergisi, 10(1), 67-86.
  • Karahan, E. (2019). STEM eğitim yaklaşımı. In A. G. Balım (Ed.), Fen öğretiminde yenilikçi yaklaşımlar (pp. 171-185). Anı Yayıncılık.
  • Karahan, E., & Akçay, A. O. (2021). STEM eğitimi yaklaşımı. In K. Bilican & B. Şenler (Eds.), İlkokulda fen öğretimi (pp. 291-316). Vizetek Yayıncılık.
  • Kaya, S. Y. (2019). STEM tutum ölçeğinin geliştirilmesi ve ilkokul öğrencilerinin STEM'e yönelik tutumlarının çeşitli değişkenlere göre incelenmesi. [Unpublished master's thesis]. Zonguldak Bülent Ecevit Üniversitesi
  • Kozcu Çakır, N., & Güven, G. (2019). Effect of 5E learning model on academic achievement and attitude towards the science course: A meta-analysis study. Cukurova University Faculty of Education Journal, 48(2), 1111-1140. https://doi.org/10.14812/cuefd.544825
  • Meço, G., & Görgülü Arı, A. (2021). Arduino destekli STEM etkinliklerine yönelik ortaokul öğrencilerinin görüşleri. Uluslararası Sosyal Araştırmalar, 14(76), 498-507.
  • Nugent, G., Barker, B. S., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes. Journal of Research on Technology in Education, 42(4), 391–408.
  • Özcan, H., & Koca, E. (2018). STEM’e yönelik tutum ölçeğinin Türkçeye uyarlanması: Geçerlik ve güvenirlik çalışması. Hacettepe Universitesi Egitim Fakultesi Dergisi, 34(2), 387-401. https://doi.org/10.16986/HUJE.2018045061.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
  • Resnick, M., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.
  • Rosenthal, R. (1991). Applied social research methods: Meta-analytic procedures for social research. SAGE Publications Ltd.
  • Rushkoff, D. (2010). Program or be programmed: Ten commands for a digital age. OR Books.
  • Sahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309-322.
  • Sisman, B., Kucuk, S., & Yaman, Y. (2020). The effects of robotics training on children’s spatial ability and attitude toward STEM. International Journal of Social Robotics, 13, 379-389.
  • Sullivan, F. R. (2016). Robotics and science literacy: Thinking skills, science process skills and systems understanding. Journal of Research in Science Teaching, 53(3), 431-455. https://doi.org/10.1002/tea.20238
  • Sümbül, H., & Çolak, H. (2020). Robotik kodlama eğitim setinin tasarlanması ve oluşturulması. Bilge International Journal of Science and Technology Research, 4(2), 103-109. https://doi.org/10.30516/bilgesci.672296
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using Multivariate Statistics (6th ed.). Pearson.
  • Tytler, R., & Osborne, J. (2012). Student attitudes and aspirations towards science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education (pp. 597-625). Springer International.
  • Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition Studies, 1(2), 42-64. https://doi.org/10.21623/1.1.2.4
  • Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st-century competences: Implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299-321.
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
There are 42 citations in total.

Details

Primary Language English
Subjects Science Education, STEM Education
Journal Section Articles
Authors

Yaren Filiz Karasu 0000-0002-1202-2851

Burcu Şenler 0000-0002-8559-6434

Early Pub Date October 14, 2025
Publication Date October 22, 2025
Submission Date June 11, 2025
Acceptance Date August 30, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Karasu, Y. F., & Şenler, B. (2025). Enhancing Students’ Perceptions of Problem-Solving Skills and STEM Attitudes with Arduino-Assisted Robotics Coding. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi Dergisi, 12(2), 251-272. https://doi.org/10.21666/muefd.1717725