Research Article
BibTex RIS Cite

KLEMENTİN ESANSİYEL YAĞININ ANTİMİKROBİYAL AKTİVİTESİ İLE NIH-3T3 FİBROBLAST HÜCRELERİ ÜZERİNE SİTOTOKSİK VE İN VİTRO YARA İYİLEŞME POTANSİYELİNİN BELİRLENMESİ

Year 2018, , 143 - 147, 19.12.2018
https://doi.org/10.22531/muglajsci.435610

Abstract

Narenciye esansiyel yağları cilt ve saç bakımı,
uykusuzluk, sindirimin düzenlenmesi ve bağışıklık sisteminin geliştirilmesi
gibi pek çok alanda kullanıma sahiptir. Bu çalışma, Türkiye’de yetiştiriciliği
yapılmakta olan bir mandalina türü olan klementin’in (Citrus clementina Hort. ex Tan) kabuğundan elde edilen esansiyel
yağın biyolojik aktivitelerinin
belirlenmesi amacıyla planlanmıştır. Klementin kabuk esansiyel yağının (CPEO)
antimikrobiyal aktivitesi E. coli, S. aureus ve bir maya türü olan C.
albicans’a karşı disk difüzyon yöntemi ile belirlenmiştir. Sitotoksisitesi MTT
kolorimetrik analizi ile NIH-3T3 fibroblast hücreleri kullanılarak tespit
edilmiştir. Ayrıca stratch-yara iyileşme tekniği kullanılarak CPEO’nın
fibroblast hücrelerinin göçü ve proliferasyonu üzerine etkinliği in vitro yara
iyileşme aktivitesi olarak değerlendirilmiştir. Sonuçlara göre CPEO’nın kayda
değer antimikrobiyal aktiviteye sahip olduğu gözlenmiştir. En yüksek inhibisyon
zonu C. albicans’a karşı
20.67±0.58
mm olarak ölçülmüştür. Sitotoksik aktivite analizine göre IC50
değeri 52.50 µg/mL olarak
belirlenmiştir. CPEO için IC50 değerinin altında uygulanan
dozlarda fibroblast hücreleri kontrol grubuna kıyasla daha hızlı sürede
proliferasyon sağlayarak yapay yaranın iyileşmesine yönelik yüksek hareket
göstermiştir. Mevcut çalışma sonuçlarına göre CPEO, patojenik
mikroorganizmalara karşı sahip olduğu antimikrobiyal karakterin yanı sıra cilt
uygulamaları ve yara iyileşmeye yönelik ürünlerin geliştirilmesinde kullanılma
potansiyeline sahiptir.

References

  • [1] Davidson, P.M. Chemical preservatives and natural antimicrobial compunds, M. P. Doyle, L. R. Beuchat, T. J. Montville (Eds.), Food Microbiology, Fundamentals and Frontiers, ASM Press, Washington DC, 520-556, 1996.
  • [2] Elshafie, H. S., Aliberti, L., Amato, M., De Feo, V., Camele, I. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. European Food Research and Technology, 1-8, 2018.
  • [3] Noori, S., Zeynali, F., Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 84, 312-320, 2018.
  • [4] Nowak, S., Lisiecki, P., Tomaszczak-Nowak, A., Grudzińska, E., Olszewska, M. A., Kicel, A. Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of Grindelia integrifolia DC. Natural product research, 1-6, 2018.
  • [5] Qadir, R., Anwar, F., Mehmood, T., Shahid, M., & Zahoor, S. Variations in chemical composition, antimicrobial and haemolytic activities of peel essential oils from three local Citrus cultivars. Pure and Applied Biology, 7(1), 282-291, 2018.
  • [6] Cristani, M., D'Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M. G., Micieli, D., Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of Agricultural and Food Chemistry, 55(15), 6300-6308, 2007.
  • [7] Kabara, J. J. Phenols and chelators. Food preservatives, 200-214, 1991.
  • [8] Hussain, A. I., Anwar, F., Chatha, S. A., Latif, S., Sherazi, S. T., Ahmad, A., Sarker, S. D. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Science and Technology, 50(1), 185-192, 2013.
  • [9] Minh Tu, N. T., Thanh, L. X., Une, A., Ukeda, H., & Sawamura, M. Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour and Fragrance Journal, 17(3), 169-174, 2002.
  • [10] Davies, F. S., Albrigo, L. G. Citrus. Cab International. Wallingford, England, 1994.
  • [11] Shaw, P. E. Review of quantitative analyses of citrus essential oils. Journal of Agricultural and Food Chemistry, 27(2), 246-257, 1979.
  • [12] Buchel, J. A. Flavoring with citrus oil. Perfumer and Flavorist, 14, 22-26, 1989.
  • [13] Dharmawan, J., Kasapis, S., Curran, P., & Johnson, J. R. Characterization of volatile compounds in selected citrus fruits from Asia. Part I: freshly‐squeezed juice. Flavour and Fragrance Journal, 22(3), 228-232, 2007.
  • [14] Kirbaşlar, Ş., Gök, A., Gülay Kirbaşlar, F., & Tepe, S. Volatiles in Turkish clementine (Citrus clementina Hort.) peel. Journal of Essential Oil Research, 24(2), 153-157, 2012.
  • [15] Collins, C.H., Lyne, P.M., Grange, J.M. (Eds.): ‘Microbiological methods’ (Butterworths, London, 1995, 7th edn.).
  • [16] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunolological Methods, 65: 55-63, 1983.
  • [17] Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols; 2(2): 329-333, 2007.
  • [18] Sharma, N., Tripathi, A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiological Research, 163(3), 337-344, 2008.
  • [19] Deba, F., Xuan, T. D., Yasuda, M., Tawata, S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food control, 19(4), 346-352, 2008.
  • [20] Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food control, 19(12), 1130-1138, 2008.
  • [21] Matasyoh, J. C., Kiplimo, J. J., Karubiu, N. M., Hailstorks, T. P. Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chemistry, 101(3), 1183-1187, 2007.
  • [22] Rodov, V., Ben-Yehoshua, S., Fang, D. Q., Kim, J. J., & Ashkenazi, R. Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance. Journal of Agricultural and Food Chemistry, 43(4), 1057-1061, 1995.
  • [23] Jayaprakasha, G. K., Negi, P. S., Sikder, S., Mohanrao, L. J., & Sakariah, K. K. Antibacterial activity of Citrus reticulata peel extracts. Zeitschrift für Naturforschung C, 55(11-12), 1030-1034, 2000.
  • [24] Veldhuizen, E. J., Tjeerdsma-van Bokhoven, J. L., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. Structural requirements for the antimicrobial activity of carvacrol. Journal of agricultural and Food Chemistry, 54(5), 1874-1879, 2006.
  • [25] Baik, J. S., Kim, S. S., Lee, J. A., Oh, T. H., Kim, J. Y., Lee, N. H., & Hyun, C. G. Chemical composition and biological activities of essential oils extracted from Korean endemic citrus species. Journal of Microbiology and Biotechnology, 18(1), 74-79, 2008.

ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS

Year 2018, , 143 - 147, 19.12.2018
https://doi.org/10.22531/muglajsci.435610

Abstract

Citrus essential
oils has many area of use such as skin and hair care, insomnia, improving
digestion, and boosting immune system. The present study is aimed to determine
the biological activities of clementine (Citrus clementina
Hort. ex Tan), one of the mandarin species,
peel essential oil (CPEO) that grow in Turkey. Antimicrobial activity of CPEO
was evaluated using disc diffusion method against Escherichia coli,
Staphylococcus aureus, and a fungi Candida albicans. The MTT (3-[4,
5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide)-colorimetric monocyte
mediated cytotoxicity assay was applied using NIH-3T3 cells and IC50
value was calculated. CPEO was also evaluated for its in vitro wound healing
effect on the fibroblast cell migration and proliferation using scratch wound
assay technique. Results of the present study indicated that CPEO has
remarkable antimicrobial activity. The highest inhibition zone was observed
against C. albicans as
20.67±0.58 mm. IC50 value obtained for CPEO was 52.50 µg/mL. Fibroblast cells showed higher
migration than the control group to heal the artificial scar after treatment of
CPEO concentrations below the IC50 dose. The results of the present study indicated that the CPEO may be useful in
effective management of skin care applications and wound healing products with
its potent activity against pathogen microorganisms.

References

  • [1] Davidson, P.M. Chemical preservatives and natural antimicrobial compunds, M. P. Doyle, L. R. Beuchat, T. J. Montville (Eds.), Food Microbiology, Fundamentals and Frontiers, ASM Press, Washington DC, 520-556, 1996.
  • [2] Elshafie, H. S., Aliberti, L., Amato, M., De Feo, V., Camele, I. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. European Food Research and Technology, 1-8, 2018.
  • [3] Noori, S., Zeynali, F., Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 84, 312-320, 2018.
  • [4] Nowak, S., Lisiecki, P., Tomaszczak-Nowak, A., Grudzińska, E., Olszewska, M. A., Kicel, A. Chemical composition and antimicrobial activity of the essential oils from flowers and leaves of Grindelia integrifolia DC. Natural product research, 1-6, 2018.
  • [5] Qadir, R., Anwar, F., Mehmood, T., Shahid, M., & Zahoor, S. Variations in chemical composition, antimicrobial and haemolytic activities of peel essential oils from three local Citrus cultivars. Pure and Applied Biology, 7(1), 282-291, 2018.
  • [6] Cristani, M., D'Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M. G., Micieli, D., Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of Agricultural and Food Chemistry, 55(15), 6300-6308, 2007.
  • [7] Kabara, J. J. Phenols and chelators. Food preservatives, 200-214, 1991.
  • [8] Hussain, A. I., Anwar, F., Chatha, S. A., Latif, S., Sherazi, S. T., Ahmad, A., Sarker, S. D. Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Science and Technology, 50(1), 185-192, 2013.
  • [9] Minh Tu, N. T., Thanh, L. X., Une, A., Ukeda, H., & Sawamura, M. Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour and Fragrance Journal, 17(3), 169-174, 2002.
  • [10] Davies, F. S., Albrigo, L. G. Citrus. Cab International. Wallingford, England, 1994.
  • [11] Shaw, P. E. Review of quantitative analyses of citrus essential oils. Journal of Agricultural and Food Chemistry, 27(2), 246-257, 1979.
  • [12] Buchel, J. A. Flavoring with citrus oil. Perfumer and Flavorist, 14, 22-26, 1989.
  • [13] Dharmawan, J., Kasapis, S., Curran, P., & Johnson, J. R. Characterization of volatile compounds in selected citrus fruits from Asia. Part I: freshly‐squeezed juice. Flavour and Fragrance Journal, 22(3), 228-232, 2007.
  • [14] Kirbaşlar, Ş., Gök, A., Gülay Kirbaşlar, F., & Tepe, S. Volatiles in Turkish clementine (Citrus clementina Hort.) peel. Journal of Essential Oil Research, 24(2), 153-157, 2012.
  • [15] Collins, C.H., Lyne, P.M., Grange, J.M. (Eds.): ‘Microbiological methods’ (Butterworths, London, 1995, 7th edn.).
  • [16] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunolological Methods, 65: 55-63, 1983.
  • [17] Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols; 2(2): 329-333, 2007.
  • [18] Sharma, N., Tripathi, A. Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiological Research, 163(3), 337-344, 2008.
  • [19] Deba, F., Xuan, T. D., Yasuda, M., Tawata, S. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food control, 19(4), 346-352, 2008.
  • [20] Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food control, 19(12), 1130-1138, 2008.
  • [21] Matasyoh, J. C., Kiplimo, J. J., Karubiu, N. M., Hailstorks, T. P. Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chemistry, 101(3), 1183-1187, 2007.
  • [22] Rodov, V., Ben-Yehoshua, S., Fang, D. Q., Kim, J. J., & Ashkenazi, R. Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance. Journal of Agricultural and Food Chemistry, 43(4), 1057-1061, 1995.
  • [23] Jayaprakasha, G. K., Negi, P. S., Sikder, S., Mohanrao, L. J., & Sakariah, K. K. Antibacterial activity of Citrus reticulata peel extracts. Zeitschrift für Naturforschung C, 55(11-12), 1030-1034, 2000.
  • [24] Veldhuizen, E. J., Tjeerdsma-van Bokhoven, J. L., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. Structural requirements for the antimicrobial activity of carvacrol. Journal of agricultural and Food Chemistry, 54(5), 1874-1879, 2006.
  • [25] Baik, J. S., Kim, S. S., Lee, J. A., Oh, T. H., Kim, J. Y., Lee, N. H., & Hyun, C. G. Chemical composition and biological activities of essential oils extracted from Korean endemic citrus species. Journal of Microbiology and Biotechnology, 18(1), 74-79, 2008.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Tuba Baygar 0000-0002-1238-3227

Nurdan Saraç 0000-0001-7676-542X

Publication Date December 19, 2018
Published in Issue Year 2018

Cite

APA Baygar, T., & Saraç, N. (2018). ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS. Mugla Journal of Science and Technology, 4(2), 143-147. https://doi.org/10.22531/muglajsci.435610
AMA Baygar T, Saraç N. ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS. MJST. December 2018;4(2):143-147. doi:10.22531/muglajsci.435610
Chicago Baygar, Tuba, and Nurdan Saraç. “ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS”. Mugla Journal of Science and Technology 4, no. 2 (December 2018): 143-47. https://doi.org/10.22531/muglajsci.435610.
EndNote Baygar T, Saraç N (December 1, 2018) ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS. Mugla Journal of Science and Technology 4 2 143–147.
IEEE T. Baygar and N. Saraç, “ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS”, MJST, vol. 4, no. 2, pp. 143–147, 2018, doi: 10.22531/muglajsci.435610.
ISNAD Baygar, Tuba - Saraç, Nurdan. “ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS”. Mugla Journal of Science and Technology 4/2 (December 2018), 143-147. https://doi.org/10.22531/muglajsci.435610.
JAMA Baygar T, Saraç N. ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS. MJST. 2018;4:143–147.
MLA Baygar, Tuba and Nurdan Saraç. “ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS”. Mugla Journal of Science and Technology, vol. 4, no. 2, 2018, pp. 143-7, doi:10.22531/muglajsci.435610.
Vancouver Baygar T, Saraç N. ANTIMICROBIAL ACTIVITY OF CLEMENTINE PEEL ESSENTIAL OIL WITH ITS CYTOTOXIC AND IN VITRO WOUND HEALING POTENTIAL ON NIH-3T3 FIBROBLAST CELLS. MJST. 2018;4(2):143-7.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.