Research Article
BibTex RIS Cite
Year 2020, , 150 - 157, 31.12.2020
https://doi.org/10.22531/muglajsci.783506

Abstract

References

  • [1] P.Frankelius, C.Norrman, K. Johansen, (2017) “Agricultural Innovation and the Role of Institutions: Lessons from the Game of Drones” in J. Agric. Environ. Ethics (pp.681-707)Kim, J., Gadsden, S. A., & Wilkerson, S. A. (2019). A Comprehensive Survey of Control Strategies for Autonomous Quadrotors. Canadian Journal of Electrical and Computer Engineering, 43(1), 3-16.
  • [2] S.G.Kumar, D.P.Shukla, (2018,June) “Application of drone for landside mapping, dimension estimation and its 3D reconstruction” in Journal of the Indian Society of Remote Sensing (pp.903-914)
  • [3] X.Liang, Y.Fang, N.Sun ve H.Lin (2018,April), “Nonlinear Hierarchial Control for Unmanned Quadrotor Transportation Systems”,in IEEE Transactions on Industrial Electronics, Vol.65, No.4 (pp. 3395-3405)
  • [4] Dierks, T., & Jagannathan, S. (2009). Output feedback control of a quadrotor UAV using neural networks. IEEE transactions on neural networks, 21(1), 50-66.
  • [5] H.Mo ve G.Farid “Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV – A Survey” in Asian Journal of Control Vol.21, No.2 pp.989-1008, March 2019.
  • [6] M.Hassanalian, A.Abdelkefi, “Classifications, applications, and design challanges of drones: A review” in Prograss in Aerospace Sciences (pp. 99-131)
  • [7] Bolandi, H., Rezaei, M., Mohsenipour, R., Nemati, H., & Smailzadeh, S. M. (2013). Attitude control of a quadrotor with optimized PID controller. Intelligent Control and Automation, 4(03), 335.
  • [8] Argentim, L. M., Rezende, W. C., Santos, P. E., & Aguiar, R. A. (2013, May). PID, LQR and LQR-PID on a quadcopter platform. In 2013 International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 1-6). IEEE.
  • [9] Bouabdallah, S., Noth, A., & Siegwart, R. (2004, September). PID vs LQ control techniques applied to an indoor micro quadrotor. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 3, pp. 2451-2456). IEEE.
  • [10] Lippiello, V., Ruggiero, F., & Serra, D. (2014, September). Emergency landing for a quadrotor in case of a propeller failure: A backstepping approach. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4782-4788). IEEE.
  • [11] J.K. Liu ve X.H. Wang, “Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation,” Springer, Tsinghua University Press, Berlin Beijing, 2012.
  • [12] Xu, R., & Ozguner, U. (2006, December). Sliding mode control of a quadrotor helicopter. In Proceedings of the 45th IEEE Conference on Decision and Control (pp. 4957-4962). IEEE.
  • [13] Yang, Y., & Yan, Y. (2016). Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerospace Science and Technology, 54, 208-217.
  • [14] Zhang, E. H., Xiong, J. J., & Luo, J. L. (2014). Second order sliding mode control for a quadrotor UAV. ISA transactions, 53(4), 1350-1356.

SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS

Year 2020, , 150 - 157, 31.12.2020
https://doi.org/10.22531/muglajsci.783506

Abstract

Nowadays, small structured micro unmanned aerial vehicles (UAV’s) with four-rotor appears in military and civilian applications. As the usage of these vehicles becomes widespread, the development of controller structures which allow the UAV’s to follow a specified trajectory precisely is a new area of interest for researchers. In this work, nonlinear mathematical model of a four-rotor UAV is obtained. In order to obtain the mathematical model of UAV Newton-Euler equations are used. In the trajectory tracking system of this vehicle, second order sliding mode controller (SOSMC) is designed. Inside of the controller, control process is divided into two subsystems in order to provide position and attitude control. SOSMC is applied to the fully actuated and under actuated subsystems individually. In the next step, coefficients of the SOSMC is determined with optimum characteristic equation. Based on the reference study, boundaries of the predefined characteristic equation is obtained. Later, appropriate values are observed. In final part, simulation results are obtained, and the results are compared with the reference study. As a result, Optimum Characteristic equation results proved its robustness according to the smaller steady state error and more precise flight performance in trajectory. In this study simulation results are obtained using Simulink/MATLAB environment.

References

  • [1] P.Frankelius, C.Norrman, K. Johansen, (2017) “Agricultural Innovation and the Role of Institutions: Lessons from the Game of Drones” in J. Agric. Environ. Ethics (pp.681-707)Kim, J., Gadsden, S. A., & Wilkerson, S. A. (2019). A Comprehensive Survey of Control Strategies for Autonomous Quadrotors. Canadian Journal of Electrical and Computer Engineering, 43(1), 3-16.
  • [2] S.G.Kumar, D.P.Shukla, (2018,June) “Application of drone for landside mapping, dimension estimation and its 3D reconstruction” in Journal of the Indian Society of Remote Sensing (pp.903-914)
  • [3] X.Liang, Y.Fang, N.Sun ve H.Lin (2018,April), “Nonlinear Hierarchial Control for Unmanned Quadrotor Transportation Systems”,in IEEE Transactions on Industrial Electronics, Vol.65, No.4 (pp. 3395-3405)
  • [4] Dierks, T., & Jagannathan, S. (2009). Output feedback control of a quadrotor UAV using neural networks. IEEE transactions on neural networks, 21(1), 50-66.
  • [5] H.Mo ve G.Farid “Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV – A Survey” in Asian Journal of Control Vol.21, No.2 pp.989-1008, March 2019.
  • [6] M.Hassanalian, A.Abdelkefi, “Classifications, applications, and design challanges of drones: A review” in Prograss in Aerospace Sciences (pp. 99-131)
  • [7] Bolandi, H., Rezaei, M., Mohsenipour, R., Nemati, H., & Smailzadeh, S. M. (2013). Attitude control of a quadrotor with optimized PID controller. Intelligent Control and Automation, 4(03), 335.
  • [8] Argentim, L. M., Rezende, W. C., Santos, P. E., & Aguiar, R. A. (2013, May). PID, LQR and LQR-PID on a quadcopter platform. In 2013 International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 1-6). IEEE.
  • [9] Bouabdallah, S., Noth, A., & Siegwart, R. (2004, September). PID vs LQ control techniques applied to an indoor micro quadrotor. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 3, pp. 2451-2456). IEEE.
  • [10] Lippiello, V., Ruggiero, F., & Serra, D. (2014, September). Emergency landing for a quadrotor in case of a propeller failure: A backstepping approach. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4782-4788). IEEE.
  • [11] J.K. Liu ve X.H. Wang, “Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation,” Springer, Tsinghua University Press, Berlin Beijing, 2012.
  • [12] Xu, R., & Ozguner, U. (2006, December). Sliding mode control of a quadrotor helicopter. In Proceedings of the 45th IEEE Conference on Decision and Control (pp. 4957-4962). IEEE.
  • [13] Yang, Y., & Yan, Y. (2016). Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerospace Science and Technology, 54, 208-217.
  • [14] Zhang, E. H., Xiong, J. J., & Luo, J. L. (2014). Second order sliding mode control for a quadrotor UAV. ISA transactions, 53(4), 1350-1356.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

Umut Tilki 0000-0002-8988-787X

Ali Can Erüst This is me 0000-0002-6619-1431

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Tilki, U., & Erüst, A. C. (2020). SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS. Mugla Journal of Science and Technology, 6(2), 150-157. https://doi.org/10.22531/muglajsci.783506
AMA Tilki U, Erüst AC. SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS. MJST. December 2020;6(2):150-157. doi:10.22531/muglajsci.783506
Chicago Tilki, Umut, and Ali Can Erüst. “SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS”. Mugla Journal of Science and Technology 6, no. 2 (December 2020): 150-57. https://doi.org/10.22531/muglajsci.783506.
EndNote Tilki U, Erüst AC (December 1, 2020) SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS. Mugla Journal of Science and Technology 6 2 150–157.
IEEE U. Tilki and A. C. Erüst, “SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS”, MJST, vol. 6, no. 2, pp. 150–157, 2020, doi: 10.22531/muglajsci.783506.
ISNAD Tilki, Umut - Erüst, Ali Can. “SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS”. Mugla Journal of Science and Technology 6/2 (December 2020), 150-157. https://doi.org/10.22531/muglajsci.783506.
JAMA Tilki U, Erüst AC. SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS. MJST. 2020;6:150–157.
MLA Tilki, Umut and Ali Can Erüst. “SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS”. Mugla Journal of Science and Technology, vol. 6, no. 2, 2020, pp. 150-7, doi:10.22531/muglajsci.783506.
Vancouver Tilki U, Erüst AC. SECOND ORDER SLIDING MODE CONTROLLER DESIGN WITH OPTIMUM CHARACTERISTIC EQUATION FOR QUADROTORS. MJST. 2020;6(2):150-7.

5975f2e33b6ce.png
Muğla Sıtkı Koçman Üniversitesi Fen Bilimleri ve Teknoloji Dergisi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.