Research Article
BibTex RIS Cite

FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL

Year 2018, Volume: 4 Issue: 1, 64 - 73, 27.06.2018
https://doi.org/10.22531/muglajsci.421813

Abstract

Recently, for
making the low-cost engineering materials the use of natural fibers as
reinforcement in polymers composites has brought forth a lot of interest. The
use of natural products instead of synthetic materials reduces the amount of
carbon released into the atmosphere. Nevertheless, reuse of used materials by
recycled is important both for the environment and for economic reasons. In
this study, flexural behaviors of sandwich composites manufactured by using
natural and recycled material were investigated. In this context, 9 different
core materials, which were made by using 3 different granules size (1 mm, 2 mm
and 4 mm) and 3 different core thickness (4 mm, 8 mm and 12 mm), were
manufactured from waste vehicle tires. After, sandwich composites were produced
by combining the core materials with natural jute fabric reinforced laminated
composites. In order to test the usability of the produced sandwich composite
materials as building material, the flexural behaviors of the sandwich
composite were investigated under three-point bending load. Test results show
that flexural behavior of the material varies according to the granular size
and thickness of the core material.

References

  • [1] Elanchezhian, C. Ramnath, B. Ramakrishnan, V.G. Rajendrakumar, M. Naveenkumar, V. and Saravanakumar, M.K., “Review on mechanical properties of natural fiber composites.,” Mater. Today Proc., vol. 5, no. 1, pp. 1785–1790, 2018.
  • [2] Rajesh M. and Kanish, T., “Mechanical Properties of Natural Fiber Sandwich Composite: Effect of Core Layer,” Mech. Mater. Sci. Eng. MMSE J. Open Access, vol. 9, pp. 1–5, 2017.
  • [3] Torres, J. P. Vandi, L.-J. Veidt, M. and Heitzmann, M. T., “The mechanical properties of natural fibre composite laminates: A statistical study,” Compos. Part Appl. Sci. Manuf., vol. 98, pp. 99–104, Jul. 2017.
  • [4] A. Sailesh, R. Arunkumar, and S. Saravanan, “Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites,” Mater. Today Proc., vol. 5, pp. 7184–7190, 2018.
  • [5] Rajesh M. andPitchaimani, J., “Mechanical Properties of Natural Fiber Braided Yarn Woven Composite: Comparison with Conventional Yarn Woven Composite,” J. Bionic Eng., vol. 14, no. 1, pp. 141–150, Jan. 2017.
  • [6] Wong, K. J. Zahi, S. Low, K. O. and Lim, C. C., “Fracture characterisation of short bamboo fibre reinforced polyester composites,” Mater. Des., vol. 31, no. 9, pp. 4147–4154, Oct. 2010.
  • [7] Campilho, R. D. S. G. Moura, D. C. Gonçalves, D. J. S. da Silva, J. F. M. G. Banea, M. D. and da Silva, L. F. M., “Fracture toughness determination of adhesive and co-cured joints in natural fibre composites,” Compos. Part B Eng., vol. 50, pp. 120–126, Jul. 2013.
  • [8] Czajczyńska, D. Krzyżyńska, R. Jouhara, H. and Spencer, N., “Use of pyrolytic gas from waste tire as a fuel: A review,” Energy, vol. 134, pp. 1121–1131, Sep. 2017.
  • [9] United States Environmental Protection Agenc, Scrap Tire Handbook on Recycling Management for US and Mexico. Washington, 2010.
  • [10] Sienkiewicz, M. Kucinska-Lipka, J. Janik, H. and Balas, A. “Progress in used tyres management in the European Union: A review,” Waste Manag., vol. 32, no. 10, pp. 1742–1751, Oct. 2012.
  • [11] Wimmer Z. and Zarevúcka, M., “A review on the effects of supercritical carbon dioxide on enzyme activity,” Int. J. Mol. Sci., vol. 11, no. 1, pp. 233–253, 2010.
  • [12] Vitale, J. P. Francucci, G. Xiong, J. and Stocchi, A., “Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels,” Compos. Part Appl. Sci. Manuf., vol. 94, pp. 217–225, Mar. 2017.
  • [13] Mallaiah, S. Sharma, K. V. and Krishna, M., “Development and comparative studies of bio-based and synthetic fiber based sandwich structures,” Int J Soft Compos Eng, vol. 2, pp. 332–5, 2012.
  • [14] Sargianis, J. J. Kim, H.-I. Andres, E. and Suhr, J., “Sound and vibration damping characteristics in natural material-based sandwich composites,” Compos. Struct., vol. 96, pp. 538–544, Feb. 2013.
  • [15] Reis, L. Carvalho, P. Alves, C. and Freitas, M., “Mechanical Behaviour of Sandwich Beams Manufactured with Glass or Jute Fiber in Facings and Cork Agglomerates as Core,” Mater. Sci. Forum, vol. 636–637, pp. 245–252, Jan. 2010.
  • [16] Dweib, M. A. Hu, B. O’Donnell, A. Shenton, H. W. and Wool, R. P. , “All natural composite sandwich beams for structural applications,” Compos. Struct., vol. 63, no. 2, pp. 147–157, Feb. 2004.
  • [17] Petrone, G. Rao, S. De Rosa, S. Mace, B. R. Franco, F. and Bhattacharyya, D., “Initial experimental investigations on natural fibre reinforced honeycomb core panels,” Compos. Part B Eng., vol. 55, pp. 400–406, Dec. 2013.
  • [18] Du, Y. Yan, N. and Kortschot, M. T., “Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation,” Compos. Part B Eng., vol. 43, no. 7, pp. 2875–2882, Oct. 2012.
  • [19] Karaduman Y. and Onal, L., “Flexural behavior of commingled jute/polypropylene nonwoven fabric reinforced sandwich composites,” Compos. Part B Eng., vol. 93, pp. 12–25, May 2016.
  • [20] ASTM, C.-393 “Standard Test Method for Flexural Properties of Sandwich Constructions,” ASTM International, 2000.
  • [21] Karabulut, N. Aktaş, M. and Balcıoğlu, H. E., “Surface Modification Effects on the Mechanical Properties of Woven Jute Fabric Reinforced Laminated Composites,” J. Nat. Fibers, pp. 1–15, Jan. 2018.
  • [22] Sideridis E. and Papadopoulos, G. A., “Short-beam and three-point-bending tests for the study of shear and flexural properties in unidirectional-fiber-reinforced epoxy composites,” J. Appl. Polym. Sci., vol. 93, no. 1, pp. 63–74, Jul. 2004.
  • [23] Setyawan, P. Sugiman, D. and Saputra, Y., “Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites,” 2016, p. 040016.
  • [24] ASTM, D-2344 “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM International, 2000.

GERİ DÖNÜŞTÜRÜLMÜŞ VE DOĞAL MALZEME KULLANILARAK ÜRETİLEN SANDVİÇ KOMPOZİTLERİNİN EĞİLME DAVRANIŞLARI

Year 2018, Volume: 4 Issue: 1, 64 - 73, 27.06.2018
https://doi.org/10.22531/muglajsci.421813

Abstract

Son yıllarda, düşük
maliyetli mühendislik malzemeleri üretebilmek için polimer malzemelerde takviye
olarak doğal fiberler kullanımı üzerine ilgi artmaktadır. Sentetik malzemeler
yerine doğal ürünlerin kullanılması atmosfere salınan karbon miktarını azaltmaktadır.
Bununla birlikte, kullanılmış malzemelerin geri dönüştürülerek yeniden
kullanılması hem çevre hem de ekonomik nedenlerden dolayı önemlidir.  Bu
çalışmada, doğal ve geri dönüştürülmüş malzeme kullanılarak üretilen sandviç
kompozitlerin eğilme davranışları incelenmiştir. Bu bağlamda, 3 farklı granül
boyutu (1 mm, 2 mm ve 4 mm) ve üç farklı çekirdek kalınlığı (4 mm, 8 mm ve 12
mm) kullanılarak yapılan dokuz farklı çekirdek malzemesi kullanılmış taşıt
lastiğinden imal edilmiştir. Daha sonra çekirdek malzemeler doğal jüt kumaş
takviyeli tabakalı kompozitler ile birleştirilerek sandviç kompozitler
üretildi. Üretilen sandviç kompozit malzemelerin yapı malzemesi olarak
kullanılabilirliğini test etmek için, üç nokta eğilme yükü altında eğilme davranışları
incelenmiştir. Test sonuçları, malzemenin eğilme davranışının, çekirdek
malzemenin tanecik boyutuna ve kalınlığına göre değiştiğini göstermektedir.

References

  • [1] Elanchezhian, C. Ramnath, B. Ramakrishnan, V.G. Rajendrakumar, M. Naveenkumar, V. and Saravanakumar, M.K., “Review on mechanical properties of natural fiber composites.,” Mater. Today Proc., vol. 5, no. 1, pp. 1785–1790, 2018.
  • [2] Rajesh M. and Kanish, T., “Mechanical Properties of Natural Fiber Sandwich Composite: Effect of Core Layer,” Mech. Mater. Sci. Eng. MMSE J. Open Access, vol. 9, pp. 1–5, 2017.
  • [3] Torres, J. P. Vandi, L.-J. Veidt, M. and Heitzmann, M. T., “The mechanical properties of natural fibre composite laminates: A statistical study,” Compos. Part Appl. Sci. Manuf., vol. 98, pp. 99–104, Jul. 2017.
  • [4] A. Sailesh, R. Arunkumar, and S. Saravanan, “Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites,” Mater. Today Proc., vol. 5, pp. 7184–7190, 2018.
  • [5] Rajesh M. andPitchaimani, J., “Mechanical Properties of Natural Fiber Braided Yarn Woven Composite: Comparison with Conventional Yarn Woven Composite,” J. Bionic Eng., vol. 14, no. 1, pp. 141–150, Jan. 2017.
  • [6] Wong, K. J. Zahi, S. Low, K. O. and Lim, C. C., “Fracture characterisation of short bamboo fibre reinforced polyester composites,” Mater. Des., vol. 31, no. 9, pp. 4147–4154, Oct. 2010.
  • [7] Campilho, R. D. S. G. Moura, D. C. Gonçalves, D. J. S. da Silva, J. F. M. G. Banea, M. D. and da Silva, L. F. M., “Fracture toughness determination of adhesive and co-cured joints in natural fibre composites,” Compos. Part B Eng., vol. 50, pp. 120–126, Jul. 2013.
  • [8] Czajczyńska, D. Krzyżyńska, R. Jouhara, H. and Spencer, N., “Use of pyrolytic gas from waste tire as a fuel: A review,” Energy, vol. 134, pp. 1121–1131, Sep. 2017.
  • [9] United States Environmental Protection Agenc, Scrap Tire Handbook on Recycling Management for US and Mexico. Washington, 2010.
  • [10] Sienkiewicz, M. Kucinska-Lipka, J. Janik, H. and Balas, A. “Progress in used tyres management in the European Union: A review,” Waste Manag., vol. 32, no. 10, pp. 1742–1751, Oct. 2012.
  • [11] Wimmer Z. and Zarevúcka, M., “A review on the effects of supercritical carbon dioxide on enzyme activity,” Int. J. Mol. Sci., vol. 11, no. 1, pp. 233–253, 2010.
  • [12] Vitale, J. P. Francucci, G. Xiong, J. and Stocchi, A., “Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels,” Compos. Part Appl. Sci. Manuf., vol. 94, pp. 217–225, Mar. 2017.
  • [13] Mallaiah, S. Sharma, K. V. and Krishna, M., “Development and comparative studies of bio-based and synthetic fiber based sandwich structures,” Int J Soft Compos Eng, vol. 2, pp. 332–5, 2012.
  • [14] Sargianis, J. J. Kim, H.-I. Andres, E. and Suhr, J., “Sound and vibration damping characteristics in natural material-based sandwich composites,” Compos. Struct., vol. 96, pp. 538–544, Feb. 2013.
  • [15] Reis, L. Carvalho, P. Alves, C. and Freitas, M., “Mechanical Behaviour of Sandwich Beams Manufactured with Glass or Jute Fiber in Facings and Cork Agglomerates as Core,” Mater. Sci. Forum, vol. 636–637, pp. 245–252, Jan. 2010.
  • [16] Dweib, M. A. Hu, B. O’Donnell, A. Shenton, H. W. and Wool, R. P. , “All natural composite sandwich beams for structural applications,” Compos. Struct., vol. 63, no. 2, pp. 147–157, Feb. 2004.
  • [17] Petrone, G. Rao, S. De Rosa, S. Mace, B. R. Franco, F. and Bhattacharyya, D., “Initial experimental investigations on natural fibre reinforced honeycomb core panels,” Compos. Part B Eng., vol. 55, pp. 400–406, Dec. 2013.
  • [18] Du, Y. Yan, N. and Kortschot, M. T., “Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation,” Compos. Part B Eng., vol. 43, no. 7, pp. 2875–2882, Oct. 2012.
  • [19] Karaduman Y. and Onal, L., “Flexural behavior of commingled jute/polypropylene nonwoven fabric reinforced sandwich composites,” Compos. Part B Eng., vol. 93, pp. 12–25, May 2016.
  • [20] ASTM, C.-393 “Standard Test Method for Flexural Properties of Sandwich Constructions,” ASTM International, 2000.
  • [21] Karabulut, N. Aktaş, M. and Balcıoğlu, H. E., “Surface Modification Effects on the Mechanical Properties of Woven Jute Fabric Reinforced Laminated Composites,” J. Nat. Fibers, pp. 1–15, Jan. 2018.
  • [22] Sideridis E. and Papadopoulos, G. A., “Short-beam and three-point-bending tests for the study of shear and flexural properties in unidirectional-fiber-reinforced epoxy composites,” J. Appl. Polym. Sci., vol. 93, no. 1, pp. 63–74, Jul. 2004.
  • [23] Setyawan, P. Sugiman, D. and Saputra, Y., “Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites,” 2016, p. 040016.
  • [24] ASTM, D-2344 “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM International, 2000.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Journals
Authors

H Ersen Balcıoğlu

Publication Date June 27, 2018
Published in Issue Year 2018 Volume: 4 Issue: 1

Cite

APA Balcıoğlu, H. E. (2018). FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL. Mugla Journal of Science and Technology, 4(1), 64-73. https://doi.org/10.22531/muglajsci.421813
AMA Balcıoğlu HE. FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL. MJST. June 2018;4(1):64-73. doi:10.22531/muglajsci.421813
Chicago Balcıoğlu, H Ersen. “FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL”. Mugla Journal of Science and Technology 4, no. 1 (June 2018): 64-73. https://doi.org/10.22531/muglajsci.421813.
EndNote Balcıoğlu HE (June 1, 2018) FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL. Mugla Journal of Science and Technology 4 1 64–73.
IEEE H. E. Balcıoğlu, “FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL”, MJST, vol. 4, no. 1, pp. 64–73, 2018, doi: 10.22531/muglajsci.421813.
ISNAD Balcıoğlu, H Ersen. “FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL”. Mugla Journal of Science and Technology 4/1 (June 2018), 64-73. https://doi.org/10.22531/muglajsci.421813.
JAMA Balcıoğlu HE. FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL. MJST. 2018;4:64–73.
MLA Balcıoğlu, H Ersen. “FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL”. Mugla Journal of Science and Technology, vol. 4, no. 1, 2018, pp. 64-73, doi:10.22531/muglajsci.421813.
Vancouver Balcıoğlu HE. FLEXURAL BEHAVIORS OF SANDWICH COMPOSITES PRODUCED USING RECYCLED AND NATURAL MATERIAL. MJST. 2018;4(1):64-73.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license