Review
BibTex RIS Cite

Investigation on the Thermal Performance and Emissions of Pellet-Fuelled Combustion Systems

Year 2018, Volume: 59 Issue: 693, 64 - 84, 31.12.2018

Abstract

The rising consumption of energy with growing population is an important problem not only in our country but also in the world. Since imported energy is used especially in the industry and buildings, researchers have to design more efficient systems, increase the efficiency of existing systems, and use particularly the alternative energy sources. One of the alternative energy sources is biomass. The pellet fuel is one of the biomass fuels. In this study, the literature is reviewed. The technologies, thermal performances and emissions of pellet-fuelled stoves and boilers are evaluated. The market conditions are determined. It was seen that the thermal efficiencies of systems were above %90, air pollutant emissions (except dust) were at low level.It has been observed that systems have development potential for new applications such as cogeneration systems.

References

  • https://ec.europa.eu/energy/en/topics/renewable-energy, son erişim tarihi: 25.04.2017.
  • Fiedler, F. 2004.“The State of the Art of Small-Scale Pellet-Based Heating Systems and Relevant Regulations in Sweden, Austria and Germany,” Renewable and Sustainable Energy Reviews, vol. 8, p. 201-221.
  • Gonzalez, J. F., Gonzalez-Garcia, C. M., Ramiro, A., Gonzalez, J., Sabio, E., Ganan, J., Rodriguez, M.A. 2004. “Combustion Optimisation of Biomass Residue Pellets for Domestic Heating with a Mural Boiler,” Biomass and Bioenergy, vol. 27, p. 145-154.
  • Carvalho, L., Wopienka, E., Pointner, C., Lundgren, J., Verma, V. K., Haslinger, W., Schmidl, C. 2013. “Performance of a Pellet Boiler Fired with Agricultural Fuels,” Applied Energy, vol. 104, p. 286-296.
  • Taşçı, T., Sungur, B., Ozbey, M., Topaloglu, B. 2017. “Pelet Yakıtlı Silindirik Kazan Tasarımı ve Performans Testleri,” 1st International Symposium on Multidisciplinary Studies and Innovative Technologies, 2-4 Kasım 2017, Tokat.
  • Collazo, J., Poerteiro, J., Patino, D., Granada, E. 2012. “Numerical Modeling of the Combustion of Densified Wood Under Fixed-Bed Conditions,” Fuel, vol. 93, p. 149-159.
  • Sui, J., Xu, X., Zhang, B., Huang, C., Lv, J. 2013. “A Mathematical Model of Biomass Briquette Fuel Combustion,” Energy and Power Engineering, vol. 5, p. 1-5.
  • Sungur, B., Topaloglu, B. 2018. “Numerical Analyses of the Effects of Fuel Load Variation on Combustion Performance of a Pellet Fuelled Boiler,”Bilge International Journal of Science and Technology Research, vol. 2 (1), p. 1-8.
  • SN 166000, Testing of Solid Fuels: Compressed Untreated Wood, Requirements and Testing. Wintherthur, Switzerland: Schweizerische Normen-Vereinigung, 2001.
  • NS 3165 NS (NBR) M Biofuel: Cylindrical Pellets of Pure Wood: Classification and Requirements. Oslo, Norway: Norwegian General Standardizing Body, 1999.
  • SS 187120, Biofuels and Peat: Fuel Pellets: Classification. Stockholm, Sweden: Swedish Standard Institution, 1998.
  • DIN 51731, Testing of Solid Fuels: Compressed Untreated Wood, Requirements and Testing. Berlin, Germany: Deutsches Institut fur Normung.
  • O-Norm M7135, Compressed Wood or Compressed Bark in Natural State: Pellets and Briquetes, Requirements and Specifications. Wien, Austria: Österreichisches Normungsinstitut.
  • Holz T. Holzpelletheizungen. Staufen bei Freiburg: Ökobuch, 2003.
  • Obernberger, I., Thek, G. “Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour,” The First World Conference on Pellets. Stockholm: Swedish Bioenergy Association, 2002.
  • Golser M. Standardisierung von Holzpellets: Aktuelle Nationale und Intenationale Entwicklungen. 2. Europaisches Expertenforum Holzpellets. Salzburg: UMBERA GmbH, 2001.
  • Schütte, A. 2006. Holzpellets Komfortabel, effizient, zukunftssicher. Bundesministerium für Ernaehrung, Landwirtschaft und Verbraucherschutz, Herausgeber: Fachagentur Nachwachsende Rohtstoffe e.V. (FNR), Gülzow.
  • www.froeling.at, son erişim tarihi: 25.07.2016.
  • www.solarfocus.at, son erişim tarihi:15.07.2016.
  • www.sht.at, son erişim tarihi:10.04.2016.
  • Pettersson, E., Nordin, A. 1996. “Effect of temperature and residence time on emissions of CO, THC, tars and NOx during pellet combustion,” Nordic Seminar on Thermochemical Conversion, Trondheim.
  • Míguez, J.L., Morán, J.C., Granada, E., Porteiro, J. 2012.“Review of Technology in Small-Scale Biomass Combustion Systems in the European Market,” Renewable and Sustainable Energy Reviews, vol. 16, p. 3867-3875.
  • www.sunandclimate.com/applications/10-biomass/122-pellets-boilers.html, son erişim tarihi: 21.08.2016.
  • www.greenheat.ie/useful-information/frequently-asked-questions/, son erişim tarihi: 27.07.2016.
  • www.ecotec.net, son erişim tarihi: 25.07.2016.
  • Obernberger, I., Thek, G. 2006. “Recent Developments Concerning Pellet Combustion Technologies - A Review of Austrian Developments,” (NEI-SE--636). Sweden
  • www.sapub.org/Book/7-Chapter%203.pdf, son erişim tarihi: 25.10.2017.
  • Dağsöz, A.K. 1993. “Bacalar,” Alp Teknik Kitaplar, İstanbul.
  • Holzpellets. Energie Die Nachwaechst, Information brochure, Biomasse Info-Zentrum BIZ, 2002.
  • Türk Standardı TS EN 303-5, Kazanlar - Bölüm 5: Katı yakıtlı kazanlar, elle ve otomatik yüklemeli, anma ısı çıktısı 500 kW’ya kadar - Terim ve Tarifleri, Gerekler, Deneyler ve İşaretleme, Türk Standartları Enstitüsü, 2013.
  • www.blauer-engel.de/, son erişim tarihi: 08.06.2016.
  • www.umweltbundesamt.de, son erişim tarihi: 25.06.2016.
  • http://europa.eu.int/comm/environment/ecolabel/, son erişim tarihi: 25.06.2016.
  • http://europa.eu.int/comm/environment/ecolabel/background/pm_eueb.htm, son erişim tarihi: 05.10.2016.
  • Richtlinien zur Forderung von Massnahmen zur Nutzung Erneuerbarer Energien, Bundesministerium für Wirtschaft und Technology, BMWi, 2002.
  • SPs Certifieringsregler for P-markning av Pelletskaminer, SPCR 093, Sveriges Provinings- och Forskningsinstitut, SP, 2000.
  • SPs Certifieringsregler for P-markning av Pelletsbrennare och Pelletspannor, SPCR 028, Sveriges Provinings- och Forskningsinstitut, SP, 1999.
  • Ecolabelling of Solid Biofuel Boilers (Dominating Source of Heat), Version 1.2, Nordic Ecolabelling, 2001.
  • Ecolabelling of Closed Fireplaces for Biofuel (Supplementary Heat Source), Version 1.1, Nordic Ecolabelling, 2003.
  • Der Blaue Engel, Grundlage für Umweltzeichenvergabe, Holzpelletheizkessel RAL-UZ 112. St. Augustin, RAL Deutsches Institut fur Gütesicherung und Kennzeichnung e.V, 2003.
  • Der Blaue Engel, Grundlage fur Umweltzeichenvergabe, Holzpelletofen RAL-UZ 111. St. Augustin, RAL Deutsches Institut fur Gutesicherung und Kennzeichnung e.V, 2003.
  • www.evergreenecosystems.co.uk/, son erişim tarihi: 25.09.2017.
  • www.eta.co.at/en/, son erişim tarihi: 25.09.2017.
  • www.ifyil.com.tr/peletgt25.html#1, son erişim tarihi: 25.09.2017.
  • www.brunner.com/en, son erişim tarihi: 25.09.2017.
  • www.guntamatic.com/home/, son erişim tarihi: 26.09.2017.
  • www.arikazan.com.tr/, son erişim tarihi: 26.09.2017.
  • www.hargassner.at/, son erişim tarihi: 26.09.2017.
  • www.okofen.co.uk/en/home/, son erişim tarihi: 26.09.2017.
  • www.sunsystem.bg/en/otoplenie/details.php?id=216, son erişim tarihi: 26.09.2017.
  • Sungur, B., Özdoğan, M., Topaloğlu, B., Namlı, L. 2017. “Küresel Enerji Tüketimi Bağlamında Mikro Kojenerasyon Sistemlerinin Teknik ve Ekonomik Değerlendirilmesi,”Mühendis ve Makina, cilt 58, sayı 686, s. 1-20.
  • Lane, N.W., Beale, W.T. 1999. “A Biomass Fired 1 kWe Stirling Engine Generator and Its Applications in South Africa’’, International Stirling Engine Conference, South Africa.
  • Podesser, E. 1999. “Electricity Production in Rural Villages with Biomass Stirling Engine,” Renewable Energy, vol. 16, p. 1049-1052.
  • Nishiyama, A., Shimojima, H., Ishikawa, A., Itaya, Y., Kambara, S., Moritomi, H., Mori, S. 2007. “Fuel and Emissions Properties of Stirling Engine Operated with Wood Powder,” Fuel, vol. 86, p. 2333-2342.
  • Crema, L., Alberti, F., Bertaso, A., Bozzoli, A. 2011. “Development of a Pellet Boiler with Stirling Engine for m-CHP Domestic Application,” Energy, Sustainability and Society, p. 1-5.
  • Thiers, S., Aoun, B., Peuportier, B. 2010. “Experimental Characterization, Modeling and Simulation of a Wood Pellet Micro-Combined Heat and Power Unit Used as a Heat Source for a Residential Building,” Energy and Buildings, vol. 42, p. 896-903.
  • Biedermann, F., Carlsen, H., Obernberger, I., Schöch M. 2004. “Small Scale CHP Plant Based on a 75 kWel Hermetic Eight Cylinder Stirling Engine for Biomass Fuels-Development, Technology and Operating Experiences,” 2nd World Conference and Exhibition on Biomass for Energy, Industry and Climate Protection, Italy.
  • Swaminathan, R. 2013. “Cost Effective, Low Capacity, Biomass Fired Power Plant,” Energy and Power, vol. 3, no. 1, p. 1-6.
  • Biedermann, F., Carlsen, H., Schöch, M., Obernberger, I. 2003. “Operating Experiences with a Small Scale Chp Pilot Plant Based on a 35 Kwel Hermetic Four Cylinder Stirling Engine for Biomass Fuels,” Proceedings of the Eleventh International Stirling Engine Conference, Italy.
  • Marinitsch, G., Biedermann, F., Carlsen, H., Schöch, M., Obernberger, I. 2005. “Development of a Hot Gas Heat Exchanger and a Cleaning System for a 35 kWel Hermetic Four Cylinder Stirling Engine for Solid Biomass Fuels,” Proceedings of the Twelfth International Stirling Engine Conference, Durham.

Pelet Yakıtlı Yakma Sistemlerinin Isıl Performans ve Emisyon Açısından İncelenmesi

Year 2018, Volume: 59 Issue: 693, 64 - 84, 31.12.2018

Abstract

Artan nüfusla birlikte enerji tüketimindeki artış enerjiyi tüm dünyada olduğu gibi ülkemizde de önemli bir problem olarak karşımıza çıkarmaktadır. Özellikle sanayi ve konutlarda kullanılan enerjinin büyük çoğunluğunun ithal olması, araştırmacıları daha verimli sistemler tasarlamaya, mevcut sistemlerin verimini arttırmaya ve özellikle de alternatif enerji kaynaklarını kullanmaya zorlamaktadır. Alternatif enerji kaynaklarından biri biyokütledir. Pelet yakıtı da biyokütle kaynakları arasında yer almaktadır. Bu çalışmada güncel literatür incelenerek pelet yakıtlı soba ve kazanların teknolojileri, ısıl performansları ve emisyonları değerlendirilmiş, piyasa durumu belirlenmiştir. Sistemlerin ısıl verimlerinin %90 üzerinde gerçekleştiği, hava kirletici emisyonlarının toz hariç düşük seviyede olduğu görülmüştür. Kojenerasyon sistemleri gibi yeni uygulamalar için uygun ve gelişme potansiyeline sahip oldukları gözlemlenmiştir.

References

  • https://ec.europa.eu/energy/en/topics/renewable-energy, son erişim tarihi: 25.04.2017.
  • Fiedler, F. 2004.“The State of the Art of Small-Scale Pellet-Based Heating Systems and Relevant Regulations in Sweden, Austria and Germany,” Renewable and Sustainable Energy Reviews, vol. 8, p. 201-221.
  • Gonzalez, J. F., Gonzalez-Garcia, C. M., Ramiro, A., Gonzalez, J., Sabio, E., Ganan, J., Rodriguez, M.A. 2004. “Combustion Optimisation of Biomass Residue Pellets for Domestic Heating with a Mural Boiler,” Biomass and Bioenergy, vol. 27, p. 145-154.
  • Carvalho, L., Wopienka, E., Pointner, C., Lundgren, J., Verma, V. K., Haslinger, W., Schmidl, C. 2013. “Performance of a Pellet Boiler Fired with Agricultural Fuels,” Applied Energy, vol. 104, p. 286-296.
  • Taşçı, T., Sungur, B., Ozbey, M., Topaloglu, B. 2017. “Pelet Yakıtlı Silindirik Kazan Tasarımı ve Performans Testleri,” 1st International Symposium on Multidisciplinary Studies and Innovative Technologies, 2-4 Kasım 2017, Tokat.
  • Collazo, J., Poerteiro, J., Patino, D., Granada, E. 2012. “Numerical Modeling of the Combustion of Densified Wood Under Fixed-Bed Conditions,” Fuel, vol. 93, p. 149-159.
  • Sui, J., Xu, X., Zhang, B., Huang, C., Lv, J. 2013. “A Mathematical Model of Biomass Briquette Fuel Combustion,” Energy and Power Engineering, vol. 5, p. 1-5.
  • Sungur, B., Topaloglu, B. 2018. “Numerical Analyses of the Effects of Fuel Load Variation on Combustion Performance of a Pellet Fuelled Boiler,”Bilge International Journal of Science and Technology Research, vol. 2 (1), p. 1-8.
  • SN 166000, Testing of Solid Fuels: Compressed Untreated Wood, Requirements and Testing. Wintherthur, Switzerland: Schweizerische Normen-Vereinigung, 2001.
  • NS 3165 NS (NBR) M Biofuel: Cylindrical Pellets of Pure Wood: Classification and Requirements. Oslo, Norway: Norwegian General Standardizing Body, 1999.
  • SS 187120, Biofuels and Peat: Fuel Pellets: Classification. Stockholm, Sweden: Swedish Standard Institution, 1998.
  • DIN 51731, Testing of Solid Fuels: Compressed Untreated Wood, Requirements and Testing. Berlin, Germany: Deutsches Institut fur Normung.
  • O-Norm M7135, Compressed Wood or Compressed Bark in Natural State: Pellets and Briquetes, Requirements and Specifications. Wien, Austria: Österreichisches Normungsinstitut.
  • Holz T. Holzpelletheizungen. Staufen bei Freiburg: Ökobuch, 2003.
  • Obernberger, I., Thek, G. “Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour,” The First World Conference on Pellets. Stockholm: Swedish Bioenergy Association, 2002.
  • Golser M. Standardisierung von Holzpellets: Aktuelle Nationale und Intenationale Entwicklungen. 2. Europaisches Expertenforum Holzpellets. Salzburg: UMBERA GmbH, 2001.
  • Schütte, A. 2006. Holzpellets Komfortabel, effizient, zukunftssicher. Bundesministerium für Ernaehrung, Landwirtschaft und Verbraucherschutz, Herausgeber: Fachagentur Nachwachsende Rohtstoffe e.V. (FNR), Gülzow.
  • www.froeling.at, son erişim tarihi: 25.07.2016.
  • www.solarfocus.at, son erişim tarihi:15.07.2016.
  • www.sht.at, son erişim tarihi:10.04.2016.
  • Pettersson, E., Nordin, A. 1996. “Effect of temperature and residence time on emissions of CO, THC, tars and NOx during pellet combustion,” Nordic Seminar on Thermochemical Conversion, Trondheim.
  • Míguez, J.L., Morán, J.C., Granada, E., Porteiro, J. 2012.“Review of Technology in Small-Scale Biomass Combustion Systems in the European Market,” Renewable and Sustainable Energy Reviews, vol. 16, p. 3867-3875.
  • www.sunandclimate.com/applications/10-biomass/122-pellets-boilers.html, son erişim tarihi: 21.08.2016.
  • www.greenheat.ie/useful-information/frequently-asked-questions/, son erişim tarihi: 27.07.2016.
  • www.ecotec.net, son erişim tarihi: 25.07.2016.
  • Obernberger, I., Thek, G. 2006. “Recent Developments Concerning Pellet Combustion Technologies - A Review of Austrian Developments,” (NEI-SE--636). Sweden
  • www.sapub.org/Book/7-Chapter%203.pdf, son erişim tarihi: 25.10.2017.
  • Dağsöz, A.K. 1993. “Bacalar,” Alp Teknik Kitaplar, İstanbul.
  • Holzpellets. Energie Die Nachwaechst, Information brochure, Biomasse Info-Zentrum BIZ, 2002.
  • Türk Standardı TS EN 303-5, Kazanlar - Bölüm 5: Katı yakıtlı kazanlar, elle ve otomatik yüklemeli, anma ısı çıktısı 500 kW’ya kadar - Terim ve Tarifleri, Gerekler, Deneyler ve İşaretleme, Türk Standartları Enstitüsü, 2013.
  • www.blauer-engel.de/, son erişim tarihi: 08.06.2016.
  • www.umweltbundesamt.de, son erişim tarihi: 25.06.2016.
  • http://europa.eu.int/comm/environment/ecolabel/, son erişim tarihi: 25.06.2016.
  • http://europa.eu.int/comm/environment/ecolabel/background/pm_eueb.htm, son erişim tarihi: 05.10.2016.
  • Richtlinien zur Forderung von Massnahmen zur Nutzung Erneuerbarer Energien, Bundesministerium für Wirtschaft und Technology, BMWi, 2002.
  • SPs Certifieringsregler for P-markning av Pelletskaminer, SPCR 093, Sveriges Provinings- och Forskningsinstitut, SP, 2000.
  • SPs Certifieringsregler for P-markning av Pelletsbrennare och Pelletspannor, SPCR 028, Sveriges Provinings- och Forskningsinstitut, SP, 1999.
  • Ecolabelling of Solid Biofuel Boilers (Dominating Source of Heat), Version 1.2, Nordic Ecolabelling, 2001.
  • Ecolabelling of Closed Fireplaces for Biofuel (Supplementary Heat Source), Version 1.1, Nordic Ecolabelling, 2003.
  • Der Blaue Engel, Grundlage für Umweltzeichenvergabe, Holzpelletheizkessel RAL-UZ 112. St. Augustin, RAL Deutsches Institut fur Gütesicherung und Kennzeichnung e.V, 2003.
  • Der Blaue Engel, Grundlage fur Umweltzeichenvergabe, Holzpelletofen RAL-UZ 111. St. Augustin, RAL Deutsches Institut fur Gutesicherung und Kennzeichnung e.V, 2003.
  • www.evergreenecosystems.co.uk/, son erişim tarihi: 25.09.2017.
  • www.eta.co.at/en/, son erişim tarihi: 25.09.2017.
  • www.ifyil.com.tr/peletgt25.html#1, son erişim tarihi: 25.09.2017.
  • www.brunner.com/en, son erişim tarihi: 25.09.2017.
  • www.guntamatic.com/home/, son erişim tarihi: 26.09.2017.
  • www.arikazan.com.tr/, son erişim tarihi: 26.09.2017.
  • www.hargassner.at/, son erişim tarihi: 26.09.2017.
  • www.okofen.co.uk/en/home/, son erişim tarihi: 26.09.2017.
  • www.sunsystem.bg/en/otoplenie/details.php?id=216, son erişim tarihi: 26.09.2017.
  • Sungur, B., Özdoğan, M., Topaloğlu, B., Namlı, L. 2017. “Küresel Enerji Tüketimi Bağlamında Mikro Kojenerasyon Sistemlerinin Teknik ve Ekonomik Değerlendirilmesi,”Mühendis ve Makina, cilt 58, sayı 686, s. 1-20.
  • Lane, N.W., Beale, W.T. 1999. “A Biomass Fired 1 kWe Stirling Engine Generator and Its Applications in South Africa’’, International Stirling Engine Conference, South Africa.
  • Podesser, E. 1999. “Electricity Production in Rural Villages with Biomass Stirling Engine,” Renewable Energy, vol. 16, p. 1049-1052.
  • Nishiyama, A., Shimojima, H., Ishikawa, A., Itaya, Y., Kambara, S., Moritomi, H., Mori, S. 2007. “Fuel and Emissions Properties of Stirling Engine Operated with Wood Powder,” Fuel, vol. 86, p. 2333-2342.
  • Crema, L., Alberti, F., Bertaso, A., Bozzoli, A. 2011. “Development of a Pellet Boiler with Stirling Engine for m-CHP Domestic Application,” Energy, Sustainability and Society, p. 1-5.
  • Thiers, S., Aoun, B., Peuportier, B. 2010. “Experimental Characterization, Modeling and Simulation of a Wood Pellet Micro-Combined Heat and Power Unit Used as a Heat Source for a Residential Building,” Energy and Buildings, vol. 42, p. 896-903.
  • Biedermann, F., Carlsen, H., Obernberger, I., Schöch M. 2004. “Small Scale CHP Plant Based on a 75 kWel Hermetic Eight Cylinder Stirling Engine for Biomass Fuels-Development, Technology and Operating Experiences,” 2nd World Conference and Exhibition on Biomass for Energy, Industry and Climate Protection, Italy.
  • Swaminathan, R. 2013. “Cost Effective, Low Capacity, Biomass Fired Power Plant,” Energy and Power, vol. 3, no. 1, p. 1-6.
  • Biedermann, F., Carlsen, H., Schöch, M., Obernberger, I. 2003. “Operating Experiences with a Small Scale Chp Pilot Plant Based on a 35 Kwel Hermetic Four Cylinder Stirling Engine for Biomass Fuels,” Proceedings of the Eleventh International Stirling Engine Conference, Italy.
  • Marinitsch, G., Biedermann, F., Carlsen, H., Schöch, M., Obernberger, I. 2005. “Development of a Hot Gas Heat Exchanger and a Cleaning System for a 35 kWel Hermetic Four Cylinder Stirling Engine for Solid Biomass Fuels,” Proceedings of the Twelfth International Stirling Engine Conference, Durham.
There are 60 citations in total.

Details

Primary Language Turkish
Journal Section Energy Performance Evaluation of University Buildings: MCBU Köprübaşı Vocational School Example
Authors

Bilal Sungur

Bahattin Topaloğlu

Mustafa Özbey

Publication Date December 31, 2018
Submission Date November 13, 2017
Acceptance Date June 6, 2018
Published in Issue Year 2018 Volume: 59 Issue: 693

Cite

APA Sungur, B., Topaloğlu, B., & Özbey, M. (2018). Pelet Yakıtlı Yakma Sistemlerinin Isıl Performans ve Emisyon Açısından İncelenmesi. Mühendis Ve Makina, 59(693), 64-84.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520