Research Article
BibTex RIS Cite

Investigation of Louvered Fin Heat Exchangers Performance via Experimental and Computational Fluid Dynamics Approach

Year 2017, Volume: 58 Issue: 687, 41 - 55, 04.08.2017

Abstract

In this study, heat transfer and pressure drop characteristics of louvered-fin heat exchangers for
various louver angles and Reynolds numbers were investigated experimentally and numerically.
In the experiments, a flow visualization method via dye injection in a closed-loop horizontal
water tunnel was used to examine the flow structure. Numerical studies were carried out with
ANSYS Fluent software to investigate the thermal and hydraulic characteristics of louvered fin
heat exchangers for different louver angles and operating conditions. The results are presented
as temperature contours, streamlines, friction factor f , Colburn J factor and goodness factor
JF. According to the obtained results, when the louver angle is 20 °, the thermal-hydraulic
performance is the highest.

Project Number

0649.STZ.2014

References

  • 1. Lyman, A. C., Stephan, R. A., Thole, K. A., Zhang, L. W., Memory, S. B. 2002. “Scaling of Heat Transfer Coefficients along Louvered Fins,” Exp. Therm. Fluid Sci., vol. 26, no. 5, p. 547–563.
  • 2. Wang, C.-C., Lee, C.-J., Chang, C.-T., Lin, S.-P. 1999. “Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers,” Int. J. Heat Mass Transf., vol. 42, no. 11, p. 1945–1956.
  • 3. Zhang, X., Tafti, D. K. 2001. “Classification and Effects of Thermal Wakes on Heat Transfer in Multilouvered Fins,” Int. J. Heat Mass Transf., vol. 44, no. 13, p. 2461–2473.
  • 4. Kim, M. H., Bullard, C. W. 2002. “Air-Side Thermal Hydraulic Performance of MultiLouvered Fin Aluminum Heat Exchangers,” Int. J. Refrig., vol. 25, no. 3, p. 390–400.
  • 5. DeJong, N. C., Jacobi, A. M. 2003. “Flow, Heat Transfer, and Pressure Drop in the NearWall Region of Louvered-Fin Arrays,” Exp. Therm. Fluid Sci., vol. 27, no. 3, p. 237–250.
  • 6. DeJong, N. C., Jacobi, A. M. 2003. “Localized Flow and Heat Transfer Interactions in Louvered-Fin Arrays,” Int. J. Heat Mass Transf., vol. 46, no. 3, p. 443–455.
  • 7. Perrotin, T., Clodic, D. 2004. “Thermal-Hydraulic CFD Study in Louvered Fin-andFlat-Tube Heat Exchangers,” Int. J. Refrig., vol. 27, no. 4, p. 422–432.
  • 8. Hsieh, C. T., Jang, J. Y. 2006. “3-D Thermal-Hydraulic Analysis for Louver Fin Heat Exchangers with Variable Louver Angle,” Appl. Therm. Eng., vol. 26, no. 14–15, p. 1629–1639.
  • 9. Huisseune, H., T’Joen, C., De Jaeger, P., Willockx, A., De Paepe, M. 2010. “Study of Junction Flows in Louvered Fin round Tube Heat Exchangers Using the Dye Injection Technique,” Exp. Therm. Fluid Sci., vol. 34, no. 8, p. 1253–1264.
  • 10. Vaisi, A., Esmaeilpour, M., Taherian, H. 2011. “Experimental Investigation of Geometry Effects on the Performance of a Compact Louvered Heat Exchanger,” Appl. Therm. Eng., vol. 31, no. 16, p. 3337–3346.
  • 11. Okbaz, A., Olcay, A. B, Pınarbaşı, A. 2014. “Numerical Investigation of Fin Rows Number Effects on Thermal and Hydraulic Characteristics of Louvered Fin Heat Exchangers for Experimental Designs,” Experimental Fluid Mechanics, 18-21 November 2014, Czech Republic, p. 393–399.
  • 12. Okbaz, A., Pınarbaşı, A., Olcay, A. B. 2016. “3D Computational Analysis of Thermal and Hydraulic Performance of Louvered Fin Heat Exchanger with Variable Louver Angle and Louver Pitch,” Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, 11-17 November 2016, Phoenix, Arizona, USA.
  • 13. Okbaz, A., Olcay, A. B., Cellek, M. S., Pınarbaşı, A. 2017. “Computational Investigation of Heat Transfer and Pressure Drop in a Typical Louver Fin-and-Tube Heat Exchanger for Various Louver Angles and Fin Pitches,” EPJ Web Conf., vol. 143.
  • 14. Sahnoun, A., Webb, R. L. 1992. “Prediction of Heat Transfer and Friction for the Louver Fin Geometry,” ASME, vol. 114 (4), p. 893–900.
  • 15. ANSYS Fluent Theory Guide, vol. 15317, no. November, p 724–746.

Panjur Kanatlı Isı Değiştiricilerinin Performansının Deneysel ve Hesaplamalı Akışkanlar Dinamiği Yaklaşımı ile İncelenmesi

Year 2017, Volume: 58 Issue: 687, 41 - 55, 04.08.2017

Abstract

Bu çalışmada, faklı panjur açılarında ve Reynolds sayılarında panjurlu-kanatlı ısı değiştiricilerinin ısı transferi ve basınç düşüşü karakteristikleri deneysel ve sayısal olarak incelenmiştir. Deneylerde akış yapısını incelemek için kapalı döngü bir su tünelinde boya ile akış görselleştirme
yöntemi kullanılmıştır. Panjurlu kanatlı ısı değiştiricilerinin ısıl ve hidrolik karakteristiklerini
farklı panjur açılarında ve çalışma şartlarında incelemek için ANSYS Fluent yazılımı ile sayısal
çalışmalar gerçekleştirilmiştir. Sonuçlar, sıcaklık eş düzey eğrileri, akım çizgileri, sürtünme
faktörü f, Colburn j faktörü ve bunların oranı olan JF faktörü olarak sunulmuştur. Elde edilen
sonuçlar, en yüksek ısıl-hidrolik performansa, panjur açısının 20° olduğu durumda ulaşıldığını
göstermiştir

Supporting Institution

T.C. Bilim, Sanayi ve Teknoloji Bakanlığı

Project Number

0649.STZ.2014

Thanks

Bu çalışma Yıldız Teknik Üniversitesi ve FRİTERM A.Ş ortaklığı ile gerçekleştirilen, T.C. Bilim, Sanayi ve Teknoloji Bakanlığı tarafından desteklenen 0649.STZ.2014 numaralı SANTEZ projesinden üretilmiştir. Desteklerini esirgemeyen kurum ve kuruluşlara teşekkür ederiz.

References

  • 1. Lyman, A. C., Stephan, R. A., Thole, K. A., Zhang, L. W., Memory, S. B. 2002. “Scaling of Heat Transfer Coefficients along Louvered Fins,” Exp. Therm. Fluid Sci., vol. 26, no. 5, p. 547–563.
  • 2. Wang, C.-C., Lee, C.-J., Chang, C.-T., Lin, S.-P. 1999. “Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers,” Int. J. Heat Mass Transf., vol. 42, no. 11, p. 1945–1956.
  • 3. Zhang, X., Tafti, D. K. 2001. “Classification and Effects of Thermal Wakes on Heat Transfer in Multilouvered Fins,” Int. J. Heat Mass Transf., vol. 44, no. 13, p. 2461–2473.
  • 4. Kim, M. H., Bullard, C. W. 2002. “Air-Side Thermal Hydraulic Performance of MultiLouvered Fin Aluminum Heat Exchangers,” Int. J. Refrig., vol. 25, no. 3, p. 390–400.
  • 5. DeJong, N. C., Jacobi, A. M. 2003. “Flow, Heat Transfer, and Pressure Drop in the NearWall Region of Louvered-Fin Arrays,” Exp. Therm. Fluid Sci., vol. 27, no. 3, p. 237–250.
  • 6. DeJong, N. C., Jacobi, A. M. 2003. “Localized Flow and Heat Transfer Interactions in Louvered-Fin Arrays,” Int. J. Heat Mass Transf., vol. 46, no. 3, p. 443–455.
  • 7. Perrotin, T., Clodic, D. 2004. “Thermal-Hydraulic CFD Study in Louvered Fin-andFlat-Tube Heat Exchangers,” Int. J. Refrig., vol. 27, no. 4, p. 422–432.
  • 8. Hsieh, C. T., Jang, J. Y. 2006. “3-D Thermal-Hydraulic Analysis for Louver Fin Heat Exchangers with Variable Louver Angle,” Appl. Therm. Eng., vol. 26, no. 14–15, p. 1629–1639.
  • 9. Huisseune, H., T’Joen, C., De Jaeger, P., Willockx, A., De Paepe, M. 2010. “Study of Junction Flows in Louvered Fin round Tube Heat Exchangers Using the Dye Injection Technique,” Exp. Therm. Fluid Sci., vol. 34, no. 8, p. 1253–1264.
  • 10. Vaisi, A., Esmaeilpour, M., Taherian, H. 2011. “Experimental Investigation of Geometry Effects on the Performance of a Compact Louvered Heat Exchanger,” Appl. Therm. Eng., vol. 31, no. 16, p. 3337–3346.
  • 11. Okbaz, A., Olcay, A. B, Pınarbaşı, A. 2014. “Numerical Investigation of Fin Rows Number Effects on Thermal and Hydraulic Characteristics of Louvered Fin Heat Exchangers for Experimental Designs,” Experimental Fluid Mechanics, 18-21 November 2014, Czech Republic, p. 393–399.
  • 12. Okbaz, A., Pınarbaşı, A., Olcay, A. B. 2016. “3D Computational Analysis of Thermal and Hydraulic Performance of Louvered Fin Heat Exchanger with Variable Louver Angle and Louver Pitch,” Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, 11-17 November 2016, Phoenix, Arizona, USA.
  • 13. Okbaz, A., Olcay, A. B., Cellek, M. S., Pınarbaşı, A. 2017. “Computational Investigation of Heat Transfer and Pressure Drop in a Typical Louver Fin-and-Tube Heat Exchanger for Various Louver Angles and Fin Pitches,” EPJ Web Conf., vol. 143.
  • 14. Sahnoun, A., Webb, R. L. 1992. “Prediction of Heat Transfer and Friction for the Louver Fin Geometry,” ASME, vol. 114 (4), p. 893–900.
  • 15. ANSYS Fluent Theory Guide, vol. 15317, no. November, p 724–746.
There are 15 citations in total.

Details

Primary Language Turkish
Journal Section Energy Performance Evaluation of University Buildings: MCBU Köprübaşı Vocational School Example
Authors

Abdulkerim Okbaz This is me

Hüseyin Onbaşıoğlu This is me

Ali Bahadır Olcay

Ali Pınarbaşı

Project Number 0649.STZ.2014
Publication Date August 4, 2017
Submission Date April 24, 2017
Acceptance Date July 14, 2017
Published in Issue Year 2017 Volume: 58 Issue: 687

Cite

APA Okbaz, A., Onbaşıoğlu, H., Olcay, A. B., Pınarbaşı, A. (2017). Panjur Kanatlı Isı Değiştiricilerinin Performansının Deneysel ve Hesaplamalı Akışkanlar Dinamiği Yaklaşımı ile İncelenmesi. Mühendis Ve Makina, 58(687), 41-55.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520