Research Article
BibTex RIS Cite

HEAT TRANSFER AND CFD ANALYSIS OF FRICTION STIR WELDED (FSW) AA 2024-T3 ALUMINUM ALLOY PLATES

Year 2015, Volume: 56 Issue: 671, 59 - 64, 11.10.2015

Abstract

This paper describes modeling three-dimensional heat transfer and CFD analysis of friction stir welded (FSW) of AA 2024-T3 aluminum alloy. Heat transfer and non-Newtonian flow equations were solved simultaneously. The results from the benchmark experiments found in the literature were used as validation purposes. Mean error between the experimental and the model temperatures don’t exceed 5 per cent. The heat generated by the shoulder and the flow fields of the plasticized aluminum for different welding conditions are depicted. Welding engineer can predict the heat energy and the metal flow around the tool at any welding conditions without making expensive experiments.

References

  • 1. Thomas, M. W., Nicholas, J., Needham, J. C., Murch, M. G., Templesmith, P., Dawes, C. J. 1991-1995. “Friction Stir Butt Welding,” GB Patent Application no. 9125978-8, 1991; US Patent no. 5460317, 1995.
  • 2. Seidel, T. U., Reynolds, A. P. 2003. “Two-Dimensional Friction Stir Welding Process Model Based on Fluid Mechanics,” Sci. Technol. Weld. Join., vol. 8 (3), p. 175–183.
  • 3. Colegrove, P. A., Shercliff, H. R. 2004. “Two-dimensional CFD Modelling of Flow Round Profiled FSW Tooling,” Sci. Technol. Weld. Join. vol. 9 (6), p. 483–492, doi: http://dx.doi.org/10.1179/136217104225021832, son erişim: 14.12.2015.
  • 4. Colegrove, P. A., Shercliff, H. R. 2005. “3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile,” Journal of Mater. Processing Tech, vol. 169, p. 320–327. doi: 10.1016/j.jmatprotec.2005.03.015.
  • 5. Colegrove, P. A. 2006. “Modeling the Heat Generation, Temperature and Microstructure of Friction Stir Welding Using Comsol Multiphysics,” Excerpt from the Proceedings of the COMSOL Users Conference, (CD-ROM), 22 October 2006, Birmingham.
  • 6. Long, T., Reynolds, A. P. 2006. “Parametric Studies of Friction Stir Welding by Commercial Fluid Dynamics Simulation,” Sci. Technol. Weld. Join., vol. 11 (2), p. 200–208.
  • 7. Schmidt, H. B., Hattel, J. H. 2008. “Thermal Modelling of Friction Stir Welding,” Scripta Mater., vol. 58, p. 332–337.
  • 8. Atharifar, H., Lin, D., Kovacevic, R. 2009. “Numerical and Experimental Investigations on the Loads Carried by the Tool during Friction Stir Welding,” J. Mater. Eng. Perform. vol. 18 (4), p. 339–350. doi: 10.1007/s11665-008-9298-1.
  • 9. Hilgert, J., Huetsch, L. L., dos Santos, J. F., Huber, N. 2010. “Material Flow around a Bobbin Tool for Friction Stir Welding,” Excerpt from the Proceedings of the COMSOL Conference, 22 June 2010, Paris (CD-ROM).
  • 10. Hilgert, J., Huetsch, L. L., dos Santos, J. F., Huber, N. 2011. “Thermal Models for Bobbin Tool Friction Stir Welding,” Journal of Mater. Processing Tech. vol. 211, p. 197–204. doi: 10.1016/j.jmatprotec.2010.09.006.
  • 11. Roy, B. S., Saha, S. C., Barma, J. D. 2012. “3-D Modeling & Numerical Simulation of Friction Stir Welding Process,” Adv. Mater. Rsrch., vol. 488-489, p. 1189–1193.
  • 12. Tutum, C. C., Deb, K., Hattel, J. H. 2013. “Multi-Criteria Optimization in Friction Stir Welding Using a Thermal Model with Prescribed Material Flow,” Materials and Manufacturing Processes vol. 28: 816-822.doi: http://dx.doi.org/10.1080/10426914.2012.736654, son erişim tarihi: 14.12.2013.
  • 13. http:// www.comsol.com /products/3.5/, son erişim tarihi: 01. 03. 2013.
  • 14. http://www-materials.eng.cam.ac.uk/FSW_Benchmark/, son erişim tarihi: 01.03.2013.

SÜRTÜNME KARIŞTIRMA KAYNAĞIYLA BİRLEŞTİRİLMİŞ AA 2024-T3 ALÜMİNYUM PLAKALARIN ISI VE AKIŞ ANALİZİ

Year 2015, Volume: 56 Issue: 671, 59 - 64, 11.10.2015

Abstract

Bu çalışmada, AA 2024-T3 alaşımlarının sürtünme karıştırma kaynaklı bağlantılarının (alın kaynağı) ısı transferi ve CFD analizi yardımıyla modellenmesi anlatılmaktadır. Isı transferi ve CFD kısmı aynı anda çözülmektedir. Sıcaklık dağılımı literatürde mevcut deneylerden yararlanılarak doğrulanmıştır. Deneysel ve model sıcaklık değerleri arasındaki ortalama hata değeri yüzde 5’i geçmemektedir. Tüm plakadaki sıcaklık dağılımı sadece bir kaynak koşulu için, metal akış sahaları ise değişik kaynak koşulları için gösterilmiştir. Kaynak mühendisi bu modelle, meydana gelen ısı miktarını, sıcaklık dağılımını ve takım etrafındaki metal akışını pahalı deneyler yapmadan tahmin edebilmektedir.

References

  • 1. Thomas, M. W., Nicholas, J., Needham, J. C., Murch, M. G., Templesmith, P., Dawes, C. J. 1991-1995. “Friction Stir Butt Welding,” GB Patent Application no. 9125978-8, 1991; US Patent no. 5460317, 1995.
  • 2. Seidel, T. U., Reynolds, A. P. 2003. “Two-Dimensional Friction Stir Welding Process Model Based on Fluid Mechanics,” Sci. Technol. Weld. Join., vol. 8 (3), p. 175–183.
  • 3. Colegrove, P. A., Shercliff, H. R. 2004. “Two-dimensional CFD Modelling of Flow Round Profiled FSW Tooling,” Sci. Technol. Weld. Join. vol. 9 (6), p. 483–492, doi: http://dx.doi.org/10.1179/136217104225021832, son erişim: 14.12.2015.
  • 4. Colegrove, P. A., Shercliff, H. R. 2005. “3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile,” Journal of Mater. Processing Tech, vol. 169, p. 320–327. doi: 10.1016/j.jmatprotec.2005.03.015.
  • 5. Colegrove, P. A. 2006. “Modeling the Heat Generation, Temperature and Microstructure of Friction Stir Welding Using Comsol Multiphysics,” Excerpt from the Proceedings of the COMSOL Users Conference, (CD-ROM), 22 October 2006, Birmingham.
  • 6. Long, T., Reynolds, A. P. 2006. “Parametric Studies of Friction Stir Welding by Commercial Fluid Dynamics Simulation,” Sci. Technol. Weld. Join., vol. 11 (2), p. 200–208.
  • 7. Schmidt, H. B., Hattel, J. H. 2008. “Thermal Modelling of Friction Stir Welding,” Scripta Mater., vol. 58, p. 332–337.
  • 8. Atharifar, H., Lin, D., Kovacevic, R. 2009. “Numerical and Experimental Investigations on the Loads Carried by the Tool during Friction Stir Welding,” J. Mater. Eng. Perform. vol. 18 (4), p. 339–350. doi: 10.1007/s11665-008-9298-1.
  • 9. Hilgert, J., Huetsch, L. L., dos Santos, J. F., Huber, N. 2010. “Material Flow around a Bobbin Tool for Friction Stir Welding,” Excerpt from the Proceedings of the COMSOL Conference, 22 June 2010, Paris (CD-ROM).
  • 10. Hilgert, J., Huetsch, L. L., dos Santos, J. F., Huber, N. 2011. “Thermal Models for Bobbin Tool Friction Stir Welding,” Journal of Mater. Processing Tech. vol. 211, p. 197–204. doi: 10.1016/j.jmatprotec.2010.09.006.
  • 11. Roy, B. S., Saha, S. C., Barma, J. D. 2012. “3-D Modeling & Numerical Simulation of Friction Stir Welding Process,” Adv. Mater. Rsrch., vol. 488-489, p. 1189–1193.
  • 12. Tutum, C. C., Deb, K., Hattel, J. H. 2013. “Multi-Criteria Optimization in Friction Stir Welding Using a Thermal Model with Prescribed Material Flow,” Materials and Manufacturing Processes vol. 28: 816-822.doi: http://dx.doi.org/10.1080/10426914.2012.736654, son erişim tarihi: 14.12.2013.
  • 13. http:// www.comsol.com /products/3.5/, son erişim tarihi: 01. 03. 2013.
  • 14. http://www-materials.eng.cam.ac.uk/FSW_Benchmark/, son erişim tarihi: 01.03.2013.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Energy Performance Evaluation of University Buildings: MCBU Köprübaşı Vocational School Example
Authors

Atilla Savaş This is me

Publication Date October 11, 2015
Submission Date March 5, 2015
Acceptance Date December 7, 2015
Published in Issue Year 2015 Volume: 56 Issue: 671

Cite

APA Savaş, A. (2015). SÜRTÜNME KARIŞTIRMA KAYNAĞIYLA BİRLEŞTİRİLMİŞ AA 2024-T3 ALÜMİNYUM PLAKALARIN ISI VE AKIŞ ANALİZİ. Mühendis Ve Makina, 56(671), 59-64.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520