Research Article
BibTex RIS Cite

Proton Exchange Membrane Fuel Cells: Thermodynamics, Components and Applications

Year 2020, Volume: 61 Issue: 698, 57 - 76, 15.05.2020
https://doi.org/10.46399/muhendismakina.750660

Abstract

Proton exchange membrane (PEM) fuel cells are those that form the water as the only by-product that directly and efficiently converts the chemical energy stored in the fuel into electrical energy; it is a technology that has the potential to reduce our energy use, pollutant emissions and dependence on fossil fuels. PEM fuel cells, which have started commercializing as a result of long years of research and development, still have difficulties to overcome to be an alternative to traditional technologies. In order to overcome the difficulties such as sustainability, durability and cost, the detailed study of PEM fuel cells’ working principle, thermodynamics, and the tasks of the ongoing research studies; In addition, potential development areas should be known and development activities should continue in this direction. In the compilation study, in addition to the detailed examination of the theory of PEM fuel cell; information on ongoing studies in the world literature has been given and the areas of application that have been in place since the discovery date are summarized.

References

  • Farooqui, U.R., Ahmad, A.L., Hamid, N.A., 2018. “Graphene Oxide: A Promising Membrane Material for Fuel Cells,” Renewable and Sustainable Energy Reviews, 82, 714–33.
  • Lucia, U. 2014. “Overview on Fuel Cells,” Renewable and Sustainable Energy Reviews, 30, 164-169.
  • Haque, M.A., Sulong, A.B., Loh, K.S., Majlan, E.H., Husaini, T., Rosli, R.E. 2017. “Acid Doped Polybenzimidazoles Based Membrane Electrode Assembly for High Temperature Proton Exchange Membrane Fuel Cell: A Review,” International Journal of Hydrogen Energy, 42(14), 9156–79.
  • Wang, Y., Leung, D.Y.C., Xuan, J., Wang, H. 2016. “A Review on Unitized Regenerative Fuel Cell Technologies , Part-A : Unitized Regenerative Proton Exchange Membrane Fuel Cells,” Renewable and Sustainable Energy Reviews, 65, 961–77.
  • Park, J.-S., Shin, M.-S., Kim, C.-S. 2017. “Proton Exchange Membranes for Fuel Cell Operation at Low Relative Humidity and Intermediate Temperature : An Updated Review,” Current Opinion in Electrochemistry, 5(1), 43–55.
  • Bakangura, E., Wu, L., Ge, L., Yang, Z., Xu, T. 2016. “Mixed Matrix Proton Exchange Membranes for Fuel Cells : State of the Art and Perspectives,” Progress in Polymer Science, 57, 103–52.
  • Authayanun, S., Im, K., Arpornwichanop, A. 2015. “A Review of the Development of High Temperature Proton Exchange Membrane Fuel Cells,” Chinese Journal of Catalysis, 36(4), 473–83.
  • Kraytsberg, A., Ein-Eli, Y. 2014. “Review of Advanced Materials for Proton Exchange Membrane Fuel Cells,” Energy and Fuels, 28(12), 7303–30.
  • Al-baghdadi, M.A.R.S., ve Al-janabi, H.A.K.S. 2005. “Optimization Study of Proton Exchange Membrane Fuel Cell Performance,” Turkish Journal of Engineering and Environmental Sciences 29, 235–240.
  • Arshad, A., Muhammed Ali, H., Habib, A., Bashir, M.A., Jabbal, M., Yan, Y. 2019. “Energy and Exergy Analysis of Fuel Cells: A review,” Thermal Science and Engineering Progress, 9, 308-321.
  • Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C. 2011. “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research,” Applied Energy, 88(4), 981–1007. 030.
  • Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M. 2010. “Review of the Proton Exchange Membranes for Fuel Cell Applications,” International Journal of Hydrogen Energy, 35, 9349-84.
  • Bae, I., Oh, K.H., Yun, M., Kang, M.K., Song, H.H., Kim, H. 2018. “Nanostructured Composite Membrane with Cross-Linked Sulfonated Poly(Arylene Ether Ketone)/Silica for High-Performance Polymer Electrolyte Membrane Fuel Cells under Low Relative Humidity,” Journal of Membrane Science, 549, 567–74.
  • Xu, X., Li, R., Tang, C., Wang, H., Zhuang, X., Liu, Y., Kang, W., Shi, L. 2018. “Cellulose Nanofiber-Embedded Sulfonated Poly (Ether Sulfone) Membranes for Proton Exchange Membrane Fuel Cells,” Carbohydrate Polymers, 184, 299–306.
  • Demirci, A. 2006. “Borik Asit Katkılı Sülfolanmış Polisitiren Membranın Polimer Elektrolit Yakıt Hücresinde Elektrolit Olarak Kullanılabilirliği,” Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara.
  • Ni, C., Wei, Y., Zhao, Q, Liu, B., Sun, Z., Gu, Y., Zhang, M., Hu, W. 2018. “Novel Proton Exchange Membranes Based on Structure-Optimized Poly(Ether Ether Ketone Ketone)s and Nanocrystalline Cellulose,” Applied Surface Science, 434, 163–75.
  • Thompsett, D. 2003. “Catalysts for the Proton Exchange Membrane Fuel Cell,” In CRC Press, 2–12.
  • Markovic, N.M., Grgur, B.N., Ross., P.N. 1997. “Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions,” The Journal of Physical Chemistry, 101(27), 5405–13.
  • Bai, L., Harrington, D.A., Conway, B.E. 1987. “Behavior of Overpotential—deposited Species in Faradaic Reactions—II. Ac Impedance Measurements on H2 Evolution Kinetics at Activated and Unactivated Pt Cathodes,” Electrochimica Acta, 32, 1713–31.
  • Zhang, L., Zhang, J., Wilkinson, D.P., Wang, H. 2006. “Progress in Preparation of Non-Noble Electrocatalysts for PEM Fuel Cell Reactions,” Journal of Power Sources, 156(2), 171–82.
  • Ferreira, P.J., La, Q, G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., Gasteiger, H.A. 2005. “Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation,” Journal of Electrochemical Society, 152(11), 2256–71.
  • Mun, Y., Kim, M.J., Park, S.-A., Lee, E., Ye, Y., Lee, S., Kim, Y.-T., Kim, S., Kim, O.-H., Cho, Y.-H., Sung, Y.-E., Lee, J. 2018. “Soft-Template Synthesis of Mesoporous Non-Precious Metal Catalyst with Fe-Nx/C Active Sites for Oxygen Reduction Reaction in Fuel Cells,” Applied Catalysis B: Environmental, 222, 191–99.
  • Boone, C.V., Maia, G. 2017. “Pt–Pd and Pt–Pd–(Cu or Fe or Co)/Graphene Nanoribbon Nanocomposites as Efficient Catalysts toward the Oxygen Reduction Reaction,” Electrochimica Acta, 247, 19–29.
  • Park, K., Matsune, H., Kishida, M., Takenaka, S. 2017. “Carbon-Supported Pd-Ag Catalysts with Silica-Coating Layers as Active and Durable Cathode Catalysts for Polymer Electrolyte Fuel Cells,” International Journal of Hydrogen Energy, 42(30), 18951–58.
  • Takenaka, S., Miyata, H., Tsukamoto, T., Matsune, H., Kishida, M. 2012. “Improvement in Activity of Highly Durable Silica-Coated Pd/CNT Cathode Catalysts for PEFC by Addition of Cu,” ECS Transactions, 50, 1715–22.
  • Takenaka, S., Tsukamoto, T., Matsune, H., Kishida, M. 2013. “Carbon Nanotube-Supported Pd-Co Catalysts Covered with Silica Layers as Active and Stable Cathode Catalysts for Polymer Electrolyte Fuel Cells,” Catalysis Science Technoly, 3, 2723–31.
  • Zhao, J., Sarkar, A., Manthiram, A. 2010. “Synthesis and Characterization of Pd-Ni Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Electrochimica Acta, 55, 1756–65.
  • Bokach, D., Hoopen, S., Muthuswamy, N., Buan, M.E.M., Ronning, M. 2016. “Nitrogen-Doped Carbon Nanofiber Catalyst for ORR in PEM Fuel Cell Stack: Performance, Durability and Market Application Aspects,” International Journal of Hydrogen Energy, 41(39), 17616–30.
  • Bharti, A., Cheruvally, G. 2017. “V-Doped TiO2 supported Pt as a Promising Oxygen Reduction Reaction Catalyst: Synthesis, Characterization and in-Situ Evaluation in Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 363, 413–21.
  • Egetenmeyer, A., Radev, I., Durneata, D., Baumgartner, M., Peinecke, V., Natter, H., Hempelmann, R. 2017. “Pulse Electrodeposited Cathode Catalyst Layers for PEM Fuel Cells,” International Journal of Hydrogen Energy, 42(19), 13649–60.
  • Xiong, X., Chen, W., Wang, W., Li, J., Chen, S. 2017. “Pt-Pd Nanodendrites as Oxygen Reduction Catalyst in Polymer-Electrolyte-Membrane Fuel Cell,” International Journal of Hydrogen Energy, 42(40), 25234–43.
  • Zeng, Y., Shao, Z., Zhang, H., Wang, Z., Hong, S., Yu, H., Yi, B. 2017. “Nanostructured Ultrathin Catalyst Layer Based on Open-Walled PtCo Bimetallic Nanotube Arrays for Proton Exchange Membrane Fuel Cells,” Nano Energy, 34, 344–55.
  • Zhang, C., Yu, H., Fu, L., Xiao, Y., Gao, Y., Li, Y., Zeng, Y., Jia, J., Yi, B., Shao, Z. 2015. “An Oriented Ultrathin Catalyst Layer Derived from High Conductive TiO2 Nanotube for Polymer Electrolyte Membrane Fuel Cell,” Electrochimica Acta, 153, 361–69.
  • Breitwieser, M., Klingele, M., Britton, B., Holdcroft, S., Zengerle, R., Thiele, S. 2015. “Improved Pt-Utilization Efficiency of Low Pt-Loading PEM Fuel Cell Electrodes Using Direct Membrane Deposition,” Electrochemistry Communications, 60, 168–71.
  • Daş, E., Alkan Gürsel, S., Işıkel Şanlı, L., Bayrakçeken Yurtcan, A. 2017. “Thermodynamically Controlled Pt Deposition over Graphene Nanoplatelets: Effect of Pt Loading on PEM Fuel Cell Performance,” International Journal of Hydrogen Energy, 42(30), 19246–56.
  • Wang, L., Wurster, P., Gazdzicki, P., Roussel, M., Sanchez, D.G., Guetaz, L., Jacques, P. A., Gago, A. S., Friedrich, K. A. 2018. “Investigation of Activity and Stability of Carbon Supported Oxynitrides with Ultra-Low Pt Concentration as ORR Catalyst for PEM Fuel Cells,” Journal of Electroanalytical Chemistry, 819, 312–21.
  • Ferreira, R. B, Falcão, D. S., Oliveira, V. B., Pinto, A. M. F. R. 2017. “Experimental Study on the Membrane Electrode Assembly of a Proton Exchange Membrane Fuel Cell: Effects of Microporous Layer, Membrane Thickness and Gas Diffusion Layer Hydrophobic Treatment,” Electrochimica Acta, 224, 337–45.
  • Taherian, R., Ghorbani, M.M., Kiahosseini, S.R. 2018. “A New Method for Optimal Fabrication of Carbon Composite Paper as Gas Diffusion Layer Used in Proton Exchange Membrane of Fuel Cells,” Journal of Electroanalytical Chemistry, 815, 90–97.
  • Park, S., Lee, J.-W., Popov, B.N. 2008. “Effect of PTFE Content in Microporous Layer on Water Management in PEM Fuel Cells,” Journal of Power Sources, 177, 457–63.
  • Lim, C., Wang, C.Y. 2004. “Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell,” Electrochimica Acta, 49: 4149–56.
  • Jayakumar, A., Sethu, S.P., Ramos, M., Robertson, J., Al-Jumaily, A. 2015. “A Technical Review on Gas Diffusion, Mechanism and Medium of PEM Fuel Cell,” Ionics, 21, 1–18.
  • Weber, A.Z., Newman, J. 2005. “Effects of Microporous Layers in Polymer Electrolyte Fuel Cells,” Journal of Electrochemical Society, 152, A667–68.
  • Tabe, Y., Aoyama, Y., Kadowaki, K., Suzuki, K., Chikahisa, T. 2015. “Impact of Microporous Layer on Liquid Water Distribution at the Catalyst Layer Interface and Cell Performance in a Polymer Electrolyte Membrane Fuel Cell,” Journal of Power Sources, 287, 422–30.
  • Lu, Z., Daino, M.M., Rath, C., Kandlikar, S.G. 2010. “Water Management Studies in PEM Fuel Cells, Part III: Dynamic Breakthrough and Intermittent Drainage Characteristics from GDLs with and without MPLs,” International Journal of Hydrogen Energy, 35, 4222–33.
  • Hussain, N., Steen, E.V., Tanaka, S., Levecque, P. 2017. “Metal Based Gas Diffusion Layers for Enhanced Fuel Cell Performance at High Current Densities,” Journal of Power Sources, 337, 18–24.
  • Omrani, R., Shabani, B. 2017. “Gas Diffusion Layer Modifications and Treatments for Improving the Performance of Proton Exchange Membrane Fuel Cells and Electrolysers: A Review,” International Journal of Hydrogen Energy, 42(47), 28515–36.
  • Hao, J., Yu, S., Jiang, Y., Li, X., Shao, Z., Yi, B. 2015. “Antimony Doped Tin Oxide Applied in the Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells,” Journal of Electroanalytical Chemistry, 756, 201–6.
  • Sadeghi, E., Djilali, N., Bahrami, M. 2011. “Effective Thermal Conductivity and Thermal Contact Resistance of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. Part 1: Effect of Compressive Load,” Journal of Power Sources, 196(1), 246–54.
  • Sadeghifar, H., Djilali, N., Bahrami, M. 2014. “Effect of Polytetrafluoroethylene (PTFE) and Micro Porous Layer (MPL) on Thermal Conductivity of Fuel Cell Gas Diffusion Layers: Modeling and Experiments,” Journal of Power Sources, 248, 632–41.
  • Antolini, E., Gonzalez, E. R. 2009. “Ceramic Materials as Supports for Low-Temperature Fuel Cell Catalysts,” Solid State Ionics, 180, 746–63.
  • Jin, J., Zheng, D., Liu, H. 2017. “The Corrosion Behavior and Mechanical Properties of CrN/Ni-P Multilayer Coated Mild Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells,” International Journal of Hydrogen Energy, 42(48), 28883–97.
  • Pan, T.J., Zuo, X.W., Wang, T., Hu, J., Chen, Z.D., Ren, Y. J. 2016. “Electrodeposited Conductive Polypyrrole/Polyaniline Composite Film for the Corrosion Protection of Copper Bipolar Plates in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, 302, 180–88.
  • Taherian, R. 2014. “A Review of Composite and Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell: Materials, Fabrication, and Material Selection,” Journal of Power Sources, 265, 370–90.
  • Kahraman, H. ve Orhan, M.F. 2017. “Flow Field Bipolar Plates in a Proton Exchange Membrane Fuel Cell: Analysis & Modeling,” Energy Conversion and Management, 133, 363–84.
  • Davies, D.P., Adcock, P.L., Turpin, M., Rowen, S. J. 2000. “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, 86(1), 237–42.
  • Wang, S.H., Peng, J., Lui, W.B. 2006. “Surface Modification and Development of Titanium Bipolar Plates for PEM Fuel Cells,” Journal of Power Sources, 160(1), 485–89.
  • Joseph, S., McClure, J.C., Sebastian, P.J., Moreira, J., Valenzuela, E. 2008. “Polyaniline and Polypyrrole Coatings on Aluminum for PEM Fuel Cell Bipolar Plates,” Journal of Power Sources, 177(1), 161–66.
  • Nikam, V.V., Reddy, R.G. 2005. “Corrosion Studies of a Copper-Beryllium Alloy in a Simulated Polymer Electrolyte Membrane Fuel Cell Environment,” Journal of Power Sources, 152(1–2), 146–55.
  • Oladoye, A.M., Carton, J.G., Benyounis, K., Stokes, J., Olabi, A.G. 2016. “Optimisation of Pack Chromised Stainless Steel for Proton Exchange Membrane Fuel Cells Bipolar Plates Using Response Surface Methodology,” Surface and Coatings Technology, 304, 384–92.
  • Sharaf, O.Z., Orhan, M.F. 2014. “An Overview of Fuel Cell Technology: Fundamentals and Applications,” Renewable and Sustainable Energy Reviews, 32, 810–53.
  • https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components
  • https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications

Proton Değişim Membran Yakıt Hücreleri: Termodinamiği, Bileşenleri ve Uygulama Alanları

Year 2020, Volume: 61 Issue: 698, 57 - 76, 15.05.2020
https://doi.org/10.46399/muhendismakina.750660

Abstract

Proton değişim membran (PEM) yakıt hücreleri yakıtta depolanan kimyasal enerjiyi doğrudan ve verimli bir şekilde elektrik enerjisine dönüştüren, tek yan ürün olarak suyun oluştuğu; enerji kullanımımızı, kirletici emisyonları ve fosil yakıtlara bağımlılığı azaltma potansiyeline sahip bir teknolojidir. Uzun yıllardır süren araştırma ve geliştirme çalışmaları neticesinde ticarileşmeye başlayan PEM yakıt hücrelerinin geleneksel teknolojilere alternatif olabilmesi için hala aşılması gereken zorluklar vardır. Sürdürülebilirlik, dayanıklılık ve maliyet gibi zorlukların aşılabilmesi için PEM yakıt hücrelerinin çalışma prensibinin, termodinamiğinin ve araştırma çalışmaları hala devam eden bileşenlerinin görevlerinin detaylı olarak irdelenmesi; ayrıca potansiyel uygulama alanlarının bilinerek geliştirme çalışmalarının bu yönde devam etmesi gerekmektedir. Yapılan derleme çalışmasında, PEM yakıt hücresinin teorisinin detaylı bir biçimde incelenmesinin yanı sıra; dünya literatüründe devam eden çalışmalar ile ilgili bilgi verilmiş ve keşfediliş tarihinden bu yana olan uygulama alanları özetlenmiştir.

References

  • Farooqui, U.R., Ahmad, A.L., Hamid, N.A., 2018. “Graphene Oxide: A Promising Membrane Material for Fuel Cells,” Renewable and Sustainable Energy Reviews, 82, 714–33.
  • Lucia, U. 2014. “Overview on Fuel Cells,” Renewable and Sustainable Energy Reviews, 30, 164-169.
  • Haque, M.A., Sulong, A.B., Loh, K.S., Majlan, E.H., Husaini, T., Rosli, R.E. 2017. “Acid Doped Polybenzimidazoles Based Membrane Electrode Assembly for High Temperature Proton Exchange Membrane Fuel Cell: A Review,” International Journal of Hydrogen Energy, 42(14), 9156–79.
  • Wang, Y., Leung, D.Y.C., Xuan, J., Wang, H. 2016. “A Review on Unitized Regenerative Fuel Cell Technologies , Part-A : Unitized Regenerative Proton Exchange Membrane Fuel Cells,” Renewable and Sustainable Energy Reviews, 65, 961–77.
  • Park, J.-S., Shin, M.-S., Kim, C.-S. 2017. “Proton Exchange Membranes for Fuel Cell Operation at Low Relative Humidity and Intermediate Temperature : An Updated Review,” Current Opinion in Electrochemistry, 5(1), 43–55.
  • Bakangura, E., Wu, L., Ge, L., Yang, Z., Xu, T. 2016. “Mixed Matrix Proton Exchange Membranes for Fuel Cells : State of the Art and Perspectives,” Progress in Polymer Science, 57, 103–52.
  • Authayanun, S., Im, K., Arpornwichanop, A. 2015. “A Review of the Development of High Temperature Proton Exchange Membrane Fuel Cells,” Chinese Journal of Catalysis, 36(4), 473–83.
  • Kraytsberg, A., Ein-Eli, Y. 2014. “Review of Advanced Materials for Proton Exchange Membrane Fuel Cells,” Energy and Fuels, 28(12), 7303–30.
  • Al-baghdadi, M.A.R.S., ve Al-janabi, H.A.K.S. 2005. “Optimization Study of Proton Exchange Membrane Fuel Cell Performance,” Turkish Journal of Engineering and Environmental Sciences 29, 235–240.
  • Arshad, A., Muhammed Ali, H., Habib, A., Bashir, M.A., Jabbal, M., Yan, Y. 2019. “Energy and Exergy Analysis of Fuel Cells: A review,” Thermal Science and Engineering Progress, 9, 308-321.
  • Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C. 2011. “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research,” Applied Energy, 88(4), 981–1007. 030.
  • Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M. 2010. “Review of the Proton Exchange Membranes for Fuel Cell Applications,” International Journal of Hydrogen Energy, 35, 9349-84.
  • Bae, I., Oh, K.H., Yun, M., Kang, M.K., Song, H.H., Kim, H. 2018. “Nanostructured Composite Membrane with Cross-Linked Sulfonated Poly(Arylene Ether Ketone)/Silica for High-Performance Polymer Electrolyte Membrane Fuel Cells under Low Relative Humidity,” Journal of Membrane Science, 549, 567–74.
  • Xu, X., Li, R., Tang, C., Wang, H., Zhuang, X., Liu, Y., Kang, W., Shi, L. 2018. “Cellulose Nanofiber-Embedded Sulfonated Poly (Ether Sulfone) Membranes for Proton Exchange Membrane Fuel Cells,” Carbohydrate Polymers, 184, 299–306.
  • Demirci, A. 2006. “Borik Asit Katkılı Sülfolanmış Polisitiren Membranın Polimer Elektrolit Yakıt Hücresinde Elektrolit Olarak Kullanılabilirliği,” Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara.
  • Ni, C., Wei, Y., Zhao, Q, Liu, B., Sun, Z., Gu, Y., Zhang, M., Hu, W. 2018. “Novel Proton Exchange Membranes Based on Structure-Optimized Poly(Ether Ether Ketone Ketone)s and Nanocrystalline Cellulose,” Applied Surface Science, 434, 163–75.
  • Thompsett, D. 2003. “Catalysts for the Proton Exchange Membrane Fuel Cell,” In CRC Press, 2–12.
  • Markovic, N.M., Grgur, B.N., Ross., P.N. 1997. “Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions,” The Journal of Physical Chemistry, 101(27), 5405–13.
  • Bai, L., Harrington, D.A., Conway, B.E. 1987. “Behavior of Overpotential—deposited Species in Faradaic Reactions—II. Ac Impedance Measurements on H2 Evolution Kinetics at Activated and Unactivated Pt Cathodes,” Electrochimica Acta, 32, 1713–31.
  • Zhang, L., Zhang, J., Wilkinson, D.P., Wang, H. 2006. “Progress in Preparation of Non-Noble Electrocatalysts for PEM Fuel Cell Reactions,” Journal of Power Sources, 156(2), 171–82.
  • Ferreira, P.J., La, Q, G.J., Shao-Horn, Y., Morgan, D., Makharia, R., Kocha, S., Gasteiger, H.A. 2005. “Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation,” Journal of Electrochemical Society, 152(11), 2256–71.
  • Mun, Y., Kim, M.J., Park, S.-A., Lee, E., Ye, Y., Lee, S., Kim, Y.-T., Kim, S., Kim, O.-H., Cho, Y.-H., Sung, Y.-E., Lee, J. 2018. “Soft-Template Synthesis of Mesoporous Non-Precious Metal Catalyst with Fe-Nx/C Active Sites for Oxygen Reduction Reaction in Fuel Cells,” Applied Catalysis B: Environmental, 222, 191–99.
  • Boone, C.V., Maia, G. 2017. “Pt–Pd and Pt–Pd–(Cu or Fe or Co)/Graphene Nanoribbon Nanocomposites as Efficient Catalysts toward the Oxygen Reduction Reaction,” Electrochimica Acta, 247, 19–29.
  • Park, K., Matsune, H., Kishida, M., Takenaka, S. 2017. “Carbon-Supported Pd-Ag Catalysts with Silica-Coating Layers as Active and Durable Cathode Catalysts for Polymer Electrolyte Fuel Cells,” International Journal of Hydrogen Energy, 42(30), 18951–58.
  • Takenaka, S., Miyata, H., Tsukamoto, T., Matsune, H., Kishida, M. 2012. “Improvement in Activity of Highly Durable Silica-Coated Pd/CNT Cathode Catalysts for PEFC by Addition of Cu,” ECS Transactions, 50, 1715–22.
  • Takenaka, S., Tsukamoto, T., Matsune, H., Kishida, M. 2013. “Carbon Nanotube-Supported Pd-Co Catalysts Covered with Silica Layers as Active and Stable Cathode Catalysts for Polymer Electrolyte Fuel Cells,” Catalysis Science Technoly, 3, 2723–31.
  • Zhao, J., Sarkar, A., Manthiram, A. 2010. “Synthesis and Characterization of Pd-Ni Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells,” Electrochimica Acta, 55, 1756–65.
  • Bokach, D., Hoopen, S., Muthuswamy, N., Buan, M.E.M., Ronning, M. 2016. “Nitrogen-Doped Carbon Nanofiber Catalyst for ORR in PEM Fuel Cell Stack: Performance, Durability and Market Application Aspects,” International Journal of Hydrogen Energy, 41(39), 17616–30.
  • Bharti, A., Cheruvally, G. 2017. “V-Doped TiO2 supported Pt as a Promising Oxygen Reduction Reaction Catalyst: Synthesis, Characterization and in-Situ Evaluation in Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 363, 413–21.
  • Egetenmeyer, A., Radev, I., Durneata, D., Baumgartner, M., Peinecke, V., Natter, H., Hempelmann, R. 2017. “Pulse Electrodeposited Cathode Catalyst Layers for PEM Fuel Cells,” International Journal of Hydrogen Energy, 42(19), 13649–60.
  • Xiong, X., Chen, W., Wang, W., Li, J., Chen, S. 2017. “Pt-Pd Nanodendrites as Oxygen Reduction Catalyst in Polymer-Electrolyte-Membrane Fuel Cell,” International Journal of Hydrogen Energy, 42(40), 25234–43.
  • Zeng, Y., Shao, Z., Zhang, H., Wang, Z., Hong, S., Yu, H., Yi, B. 2017. “Nanostructured Ultrathin Catalyst Layer Based on Open-Walled PtCo Bimetallic Nanotube Arrays for Proton Exchange Membrane Fuel Cells,” Nano Energy, 34, 344–55.
  • Zhang, C., Yu, H., Fu, L., Xiao, Y., Gao, Y., Li, Y., Zeng, Y., Jia, J., Yi, B., Shao, Z. 2015. “An Oriented Ultrathin Catalyst Layer Derived from High Conductive TiO2 Nanotube for Polymer Electrolyte Membrane Fuel Cell,” Electrochimica Acta, 153, 361–69.
  • Breitwieser, M., Klingele, M., Britton, B., Holdcroft, S., Zengerle, R., Thiele, S. 2015. “Improved Pt-Utilization Efficiency of Low Pt-Loading PEM Fuel Cell Electrodes Using Direct Membrane Deposition,” Electrochemistry Communications, 60, 168–71.
  • Daş, E., Alkan Gürsel, S., Işıkel Şanlı, L., Bayrakçeken Yurtcan, A. 2017. “Thermodynamically Controlled Pt Deposition over Graphene Nanoplatelets: Effect of Pt Loading on PEM Fuel Cell Performance,” International Journal of Hydrogen Energy, 42(30), 19246–56.
  • Wang, L., Wurster, P., Gazdzicki, P., Roussel, M., Sanchez, D.G., Guetaz, L., Jacques, P. A., Gago, A. S., Friedrich, K. A. 2018. “Investigation of Activity and Stability of Carbon Supported Oxynitrides with Ultra-Low Pt Concentration as ORR Catalyst for PEM Fuel Cells,” Journal of Electroanalytical Chemistry, 819, 312–21.
  • Ferreira, R. B, Falcão, D. S., Oliveira, V. B., Pinto, A. M. F. R. 2017. “Experimental Study on the Membrane Electrode Assembly of a Proton Exchange Membrane Fuel Cell: Effects of Microporous Layer, Membrane Thickness and Gas Diffusion Layer Hydrophobic Treatment,” Electrochimica Acta, 224, 337–45.
  • Taherian, R., Ghorbani, M.M., Kiahosseini, S.R. 2018. “A New Method for Optimal Fabrication of Carbon Composite Paper as Gas Diffusion Layer Used in Proton Exchange Membrane of Fuel Cells,” Journal of Electroanalytical Chemistry, 815, 90–97.
  • Park, S., Lee, J.-W., Popov, B.N. 2008. “Effect of PTFE Content in Microporous Layer on Water Management in PEM Fuel Cells,” Journal of Power Sources, 177, 457–63.
  • Lim, C., Wang, C.Y. 2004. “Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell,” Electrochimica Acta, 49: 4149–56.
  • Jayakumar, A., Sethu, S.P., Ramos, M., Robertson, J., Al-Jumaily, A. 2015. “A Technical Review on Gas Diffusion, Mechanism and Medium of PEM Fuel Cell,” Ionics, 21, 1–18.
  • Weber, A.Z., Newman, J. 2005. “Effects of Microporous Layers in Polymer Electrolyte Fuel Cells,” Journal of Electrochemical Society, 152, A667–68.
  • Tabe, Y., Aoyama, Y., Kadowaki, K., Suzuki, K., Chikahisa, T. 2015. “Impact of Microporous Layer on Liquid Water Distribution at the Catalyst Layer Interface and Cell Performance in a Polymer Electrolyte Membrane Fuel Cell,” Journal of Power Sources, 287, 422–30.
  • Lu, Z., Daino, M.M., Rath, C., Kandlikar, S.G. 2010. “Water Management Studies in PEM Fuel Cells, Part III: Dynamic Breakthrough and Intermittent Drainage Characteristics from GDLs with and without MPLs,” International Journal of Hydrogen Energy, 35, 4222–33.
  • Hussain, N., Steen, E.V., Tanaka, S., Levecque, P. 2017. “Metal Based Gas Diffusion Layers for Enhanced Fuel Cell Performance at High Current Densities,” Journal of Power Sources, 337, 18–24.
  • Omrani, R., Shabani, B. 2017. “Gas Diffusion Layer Modifications and Treatments for Improving the Performance of Proton Exchange Membrane Fuel Cells and Electrolysers: A Review,” International Journal of Hydrogen Energy, 42(47), 28515–36.
  • Hao, J., Yu, S., Jiang, Y., Li, X., Shao, Z., Yi, B. 2015. “Antimony Doped Tin Oxide Applied in the Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells,” Journal of Electroanalytical Chemistry, 756, 201–6.
  • Sadeghi, E., Djilali, N., Bahrami, M. 2011. “Effective Thermal Conductivity and Thermal Contact Resistance of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells. Part 1: Effect of Compressive Load,” Journal of Power Sources, 196(1), 246–54.
  • Sadeghifar, H., Djilali, N., Bahrami, M. 2014. “Effect of Polytetrafluoroethylene (PTFE) and Micro Porous Layer (MPL) on Thermal Conductivity of Fuel Cell Gas Diffusion Layers: Modeling and Experiments,” Journal of Power Sources, 248, 632–41.
  • Antolini, E., Gonzalez, E. R. 2009. “Ceramic Materials as Supports for Low-Temperature Fuel Cell Catalysts,” Solid State Ionics, 180, 746–63.
  • Jin, J., Zheng, D., Liu, H. 2017. “The Corrosion Behavior and Mechanical Properties of CrN/Ni-P Multilayer Coated Mild Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells,” International Journal of Hydrogen Energy, 42(48), 28883–97.
  • Pan, T.J., Zuo, X.W., Wang, T., Hu, J., Chen, Z.D., Ren, Y. J. 2016. “Electrodeposited Conductive Polypyrrole/Polyaniline Composite Film for the Corrosion Protection of Copper Bipolar Plates in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, 302, 180–88.
  • Taherian, R. 2014. “A Review of Composite and Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell: Materials, Fabrication, and Material Selection,” Journal of Power Sources, 265, 370–90.
  • Kahraman, H. ve Orhan, M.F. 2017. “Flow Field Bipolar Plates in a Proton Exchange Membrane Fuel Cell: Analysis & Modeling,” Energy Conversion and Management, 133, 363–84.
  • Davies, D.P., Adcock, P.L., Turpin, M., Rowen, S. J. 2000. “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, 86(1), 237–42.
  • Wang, S.H., Peng, J., Lui, W.B. 2006. “Surface Modification and Development of Titanium Bipolar Plates for PEM Fuel Cells,” Journal of Power Sources, 160(1), 485–89.
  • Joseph, S., McClure, J.C., Sebastian, P.J., Moreira, J., Valenzuela, E. 2008. “Polyaniline and Polypyrrole Coatings on Aluminum for PEM Fuel Cell Bipolar Plates,” Journal of Power Sources, 177(1), 161–66.
  • Nikam, V.V., Reddy, R.G. 2005. “Corrosion Studies of a Copper-Beryllium Alloy in a Simulated Polymer Electrolyte Membrane Fuel Cell Environment,” Journal of Power Sources, 152(1–2), 146–55.
  • Oladoye, A.M., Carton, J.G., Benyounis, K., Stokes, J., Olabi, A.G. 2016. “Optimisation of Pack Chromised Stainless Steel for Proton Exchange Membrane Fuel Cells Bipolar Plates Using Response Surface Methodology,” Surface and Coatings Technology, 304, 384–92.
  • Sharaf, O.Z., Orhan, M.F. 2014. “An Overview of Fuel Cell Technology: Fundamentals and Applications,” Renewable and Sustainable Energy Reviews, 32, 810–53.
  • https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components
  • https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systems-and-stacks-transportation-applications
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Energy Performance Evaluation of University Buildings: MCBU Köprübaşı Vocational School Example
Authors

Gamze Karanfil

Publication Date May 15, 2020
Submission Date January 21, 2020
Acceptance Date April 6, 2020
Published in Issue Year 2020 Volume: 61 Issue: 698

Cite

APA Karanfil, G. (2020). Proton Değişim Membran Yakıt Hücreleri: Termodinamiği, Bileşenleri ve Uygulama Alanları. Mühendis Ve Makina, 61(698), 57-76. https://doi.org/10.46399/muhendismakina.750660

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520