Research Article
BibTex RIS Cite

ENERGY, EXERGY, THERMOECOLOGIC, SUSTAINABILITY, THERMOECONOMIC AND EXERGOECONOMIC ANALYSES OF SOLAR COLLECTORS

Year 2020, Volume: 61 Issue: 700, 228 - 240, 15.08.2020

Abstract

In this study, energy, exergy, thermoecologic, sustainability, thermoeconomic and exergoeconomic analyses of solar collectors are explained and these analyses are applied to a case study. As a case study, flat plate solar collector with 8m2 area is considered. The exergy efficiency of the system is calculated as 1,99%, while energy efficiency is 52,46%. The sustainability index, thermoecologic performance coefficient, thermoeconomic parameter rate and total exergoeconomic parameter rate of the system are found as 1,02, 0,0206, 1,4 W/TL and 2,683 W/TL, respectively. The maximum energy input and exergy input are caused by the incoming solar radiation. It is seen that most of this energy/exergy is lost, and destructed due to irreversibilities. This situation is the biggest disadvantage of the flat plate solar collectors.

References

  • 1. Caliskan, H., Hepbasli, A. 2009. “Comparing the energetic and exergetic prices of various energy sources for the Turkish residential and industrial applications”. Proceedings of the 1st International Exergy, Life Cycle Assessment and Sustainability Workshop & Symposium (ELCAS-2009), Nisyros, Greece, 4-6 June, 2009, pp. Exergy and Buildings I.8.
  • 2. Caliskan, H., Hepbasli, A. 2010. “Energy and exergy prices of various energy sources along with their CO2 equivalents”. Energy Policy 38:3468-3481.
  • 3. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study”. Applied Thermal Engineering 61:784-798.
  • 4. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system”. International Journal of Hydrogen Energy 38:6104-6111.
  • 5. Caliskan, H. 2016. “Exergy and sustainability assessments of flat plate solar thermal collectors”. International Journal of Engineering Technology, Management and Applied Sciences (IJETMAS) 4(10):8-12.
  • 6. Akella, AK., Saini RP, Sharma MP. 2009. “Social, economical and environmental impacts of renewable energy systems”. Renewable Energy 34:390-396.
  • 7. Caliskan, H. 2015. “Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications”. Renewable & Sustainable Energy Reviews 43:1016-1034.
  • 8. EIA (International Energy Agency). 2013. “U.S. Energy Information Administration”, http://www.eia.gov/tools/faqs/faq.cfm?id=527&t=1. İnternet Erişim, 2020.
  • 9. Chamoli, S. 2013. “Exergy analysis of a flat plate solar collector”. Journal of Energy in Southern Africa 24:8-13.
  • 10. Faizal, M., Saidur, R., Mekhilef, S., Hepbasli, A., Mahbubul, IM. 2014. “Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid”. Clean Technologies and Environmental Policy 17:1457–1473.
  • 11. Caliskan, H. 2016. “Environmental assessment of solar collectors”. International Journal of Engineering Technology Science and Research (IJETSR) 3(9):42-45.
  • 12. IEA (International Energy Agency). 2011. “Solar Energy Perspectives: Executive Summary". International Energy Agency. http://www.eng.uc.edu/~beaucag/Classes/SolarPowerForAfrica/SolarEnergyPerspectives6111251e.pdf. İnternet Erişim, 2020.
  • 13. Shojaeizadeh, E., Veysi, F. 2016. “Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector”. Applied Thermal Engineering 98:1116–1129.
  • 14. Sun, C., Liu, Y., Duan, C., Zheng, Y., Chang, H., Shu, S. A mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification. Energy Conversion and Management 115:43–51.
  • 15. Kainth, M., Sharma, VK. 2014. “Latest evolutions in flat plate solar collectors technology”, International Journal of Mechanical Engineering (IJME) 1(1):7-11.
  • 16. Jeon, J., Park, S., Lee, BJ. 2016. “Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonicnanofluid”. Solar Energy 132:247–256.
  • 17. Dincer, I., Rosen, MA. 2007. “Exergy: Energy Environment and Sustainable Development”, Oxford, UK, ISBN: 10:0080445292, Elsevier.
  • 18. Ust, Y., Sahin, B., Kodal, A., Akcat, IH. 2006. “Ecological coefficient of performance analysis and optimization of an irreversible regenerative-brayton heat”. Applied Energy 83:558–572.
  • 19. Çalışkan, H. 2012. “Özgün Isıl Enerji Depolama Sistemlerinin Analizi ve Performans Değerlendirmesi”. Doktora Tezi. Ege Üniversitesi.
  • 20. Rosen, MA., Dincer, I. 2003. “Exergy–cost–energy–mass analysis of thermal systems and processes”. Energy Conversion and Management 44:1633–1651.
  • 21. Rosen, MA., Dincer, I. 2003. “Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station” Energy Conversion and Management 44:2743–2761.
  • 22. Rosen, MA., Dincer, I. 2003. “Exergoeconomic analysis of power plants operating on various fuels”, Applied Thermal Engineering 23:643–658.
  • 23. Darling, D. 2016. “Flat Plate Solar Thermal Collector”. http://www.daviddarling.info/encyclopedia/F/AE_flat_plate_solar_thermal_collector.htm. İnternet Erişim, 2016.
  • 24. Solarserver. 2016. “Solar Collectors”. http://www.solarserver.com/knowledge/basic-knowledge/solar-collectors.html. İnternet Erişim, 2016.
  • 25. Enerji Portalı. 2020. “Güneş Kollektörü Nedir”. https://www.enerjiportali.com/gunes-kollektoru-nedir/. İnternet Erişim, 2020.
  • 26. Solaranka. 2020. “Ankara Solar Güneş Enerjisi”. https://www.solaranka.com/, İnternet Erişim, 2020.

GÜNEŞ KOLLEKTÖRLERİNİN ENERJİ, EKSERJİ, TERMOEKOLOJİK, SÜRDÜRÜLEBİLİRLİK, TERMOEKONOMİK VE EKSERGOEKONOMİK ANALİZLERİ

Year 2020, Volume: 61 Issue: 700, 228 - 240, 15.08.2020

Abstract

Bu çalışmada, güneş kollektörlerinin enerji, ekserji, termoekolojik, sürdürülebilirlik, termoekonomik ve eksergoekonomik analizleri açıklanmış ve örnek bir uygulama üzerine bu analizler uygulanmıştır. Örnek uygulama olarak 8 m2 alanında düzlemsel güneş kollektörü esas alınmıştır. Sistemin enerji verimi %52,46 olarak bulunurken, ekserji verimi %1,99 olarak hesaplanmıştır. Sistemin sürdürülebilirlik indeksi, termoekolojik performans katsayısı, termoekonomik parametre değeri ve toplam eksergoekonomik parametre değeri sırasıyla 1,02, 0,0206, 1,4 W/TL ve 2,683 W/TL olarak bulunmuştur. Sistemin en yüksek enerji girişi ve ekserji girişi, gelen güneş ışınımından kaynaklanmaktadır. Bu enerjinin/ekserjinin büyük bir kısmının kayba ve tersinmezliklerden dolayı yıkıma uğradığı görülmektedir. Bu durum, düzlemsel güneş kollektörlerinin en büyük dezavantajdır.

References

  • 1. Caliskan, H., Hepbasli, A. 2009. “Comparing the energetic and exergetic prices of various energy sources for the Turkish residential and industrial applications”. Proceedings of the 1st International Exergy, Life Cycle Assessment and Sustainability Workshop & Symposium (ELCAS-2009), Nisyros, Greece, 4-6 June, 2009, pp. Exergy and Buildings I.8.
  • 2. Caliskan, H., Hepbasli, A. 2010. “Energy and exergy prices of various energy sources along with their CO2 equivalents”. Energy Policy 38:3468-3481.
  • 3. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study”. Applied Thermal Engineering 61:784-798.
  • 4. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system”. International Journal of Hydrogen Energy 38:6104-6111.
  • 5. Caliskan, H. 2016. “Exergy and sustainability assessments of flat plate solar thermal collectors”. International Journal of Engineering Technology, Management and Applied Sciences (IJETMAS) 4(10):8-12.
  • 6. Akella, AK., Saini RP, Sharma MP. 2009. “Social, economical and environmental impacts of renewable energy systems”. Renewable Energy 34:390-396.
  • 7. Caliskan, H. 2015. “Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications”. Renewable & Sustainable Energy Reviews 43:1016-1034.
  • 8. EIA (International Energy Agency). 2013. “U.S. Energy Information Administration”, http://www.eia.gov/tools/faqs/faq.cfm?id=527&t=1. İnternet Erişim, 2020.
  • 9. Chamoli, S. 2013. “Exergy analysis of a flat plate solar collector”. Journal of Energy in Southern Africa 24:8-13.
  • 10. Faizal, M., Saidur, R., Mekhilef, S., Hepbasli, A., Mahbubul, IM. 2014. “Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid”. Clean Technologies and Environmental Policy 17:1457–1473.
  • 11. Caliskan, H. 2016. “Environmental assessment of solar collectors”. International Journal of Engineering Technology Science and Research (IJETSR) 3(9):42-45.
  • 12. IEA (International Energy Agency). 2011. “Solar Energy Perspectives: Executive Summary". International Energy Agency. http://www.eng.uc.edu/~beaucag/Classes/SolarPowerForAfrica/SolarEnergyPerspectives6111251e.pdf. İnternet Erişim, 2020.
  • 13. Shojaeizadeh, E., Veysi, F. 2016. “Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector”. Applied Thermal Engineering 98:1116–1129.
  • 14. Sun, C., Liu, Y., Duan, C., Zheng, Y., Chang, H., Shu, S. A mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification. Energy Conversion and Management 115:43–51.
  • 15. Kainth, M., Sharma, VK. 2014. “Latest evolutions in flat plate solar collectors technology”, International Journal of Mechanical Engineering (IJME) 1(1):7-11.
  • 16. Jeon, J., Park, S., Lee, BJ. 2016. “Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonicnanofluid”. Solar Energy 132:247–256.
  • 17. Dincer, I., Rosen, MA. 2007. “Exergy: Energy Environment and Sustainable Development”, Oxford, UK, ISBN: 10:0080445292, Elsevier.
  • 18. Ust, Y., Sahin, B., Kodal, A., Akcat, IH. 2006. “Ecological coefficient of performance analysis and optimization of an irreversible regenerative-brayton heat”. Applied Energy 83:558–572.
  • 19. Çalışkan, H. 2012. “Özgün Isıl Enerji Depolama Sistemlerinin Analizi ve Performans Değerlendirmesi”. Doktora Tezi. Ege Üniversitesi.
  • 20. Rosen, MA., Dincer, I. 2003. “Exergy–cost–energy–mass analysis of thermal systems and processes”. Energy Conversion and Management 44:1633–1651.
  • 21. Rosen, MA., Dincer, I. 2003. “Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station” Energy Conversion and Management 44:2743–2761.
  • 22. Rosen, MA., Dincer, I. 2003. “Exergoeconomic analysis of power plants operating on various fuels”, Applied Thermal Engineering 23:643–658.
  • 23. Darling, D. 2016. “Flat Plate Solar Thermal Collector”. http://www.daviddarling.info/encyclopedia/F/AE_flat_plate_solar_thermal_collector.htm. İnternet Erişim, 2016.
  • 24. Solarserver. 2016. “Solar Collectors”. http://www.solarserver.com/knowledge/basic-knowledge/solar-collectors.html. İnternet Erişim, 2016.
  • 25. Enerji Portalı. 2020. “Güneş Kollektörü Nedir”. https://www.enerjiportali.com/gunes-kollektoru-nedir/. İnternet Erişim, 2020.
  • 26. Solaranka. 2020. “Ankara Solar Güneş Enerjisi”. https://www.solaranka.com/, İnternet Erişim, 2020.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Energy Performance Evaluation of University Buildings: MCBU Köprübaşı Vocational School Example
Authors

Hakan Çalışkan 0000-0002-6571-0965

Publication Date August 15, 2020
Submission Date July 26, 2020
Acceptance Date August 7, 2020
Published in Issue Year 2020 Volume: 61 Issue: 700

Cite

APA Çalışkan, H. (2020). GÜNEŞ KOLLEKTÖRLERİNİN ENERJİ, EKSERJİ, TERMOEKOLOJİK, SÜRDÜRÜLEBİLİRLİK, TERMOEKONOMİK VE EKSERGOEKONOMİK ANALİZLERİ. Mühendis Ve Makina, 61(700), 228-240.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520