Research Article
BibTex RIS Cite

Bir Yatay Gizli Isıl Enerji Depolama Biriminde Eksantriklik: İç Boru Geometrisinin Etkileri

Year 2022, Volume: 63 Issue: 709, 672 - 688, 30.12.2022
https://doi.org/10.46399/muhendismakina.1139121

Abstract

Güneş enerjisinin kesintili karakteristiği, farklı sektörlerde süreklilik arz eden ve güvenilir enerji sağlamak amaçlı uygulamaların geliştirilmesini teşvik etmektedir. Faz değiştiren malzemelerin kullanıldığı gizli ısıl enerji depolama çözümleri, boyutları, maliyetleri ve sabite yakın çalışma sıcaklıkları nedeniyle araştırmacıların ana odak noktası olmuştur. Eş merkezli LTES ünitelerinde performans iyileştirmesi için temel yöntemlerden bir tanesi, eksantrikliği sağlamak ve ünitenin tepki ve şarj süresini azaltmak için iç borunun konumunu değiştirmektir. Bu çalışmada, daire, kare ve üçgen şeklindeki farklı iç boru geometrileri için eksantriklik uygulaması gerçekleştirilmiştir. Tüm durumlar için zamana bağlı erime davranışı hız, sıcaklık ve sıvı fraksiyonu konturları incelenerek sunulmuştur. Tüm durumlar için en düşük erime süresine sahip üçgen eksantrik tasarım ile erime süresinin en optimum şekilde iyileştirildiği gözlemlenmiştir. Üçgen tasarımda şarj süresi yaklaşık %50 azalırken, daire ve kare tasarımlarda bu azalma daha az belirgindir. Eksantrikliğin kullanılmasından kaynaklanan doğal konveksiyon performansındaki artış, erime süresindeki iyileşmelerin temel nedenidir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Alva, G., Liu, L., Huang, X., & Fang, G. (2017). Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 68, 693-706.
  • Nkwetta, D. N., & Haghighat, F. (2014). Thermal energy storage with phase change material—A state-of-the art review. Sustainable cities and society, 10, 87-100.
  • Kamkari, B., & Shokouhmand, H. (2014). Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. International Journal of Heat and Mass Transfer, 78, 839-851.
  • Desai, A. N., Gunjal, A., & Singh, V. K. (2020). Numerical investigations of fin efficacy for phase change material (PCM) based thermal control module. International Journal of Heat and Mass Transfer, 147, 118855.
  • Fan, L., & Khodadadi, J. M. (2011). Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renewable and sustainable energy reviews, 15(1), 24-46.
  • Kibria, M. A., Anisur, M. R., Mahfuz, M. H., Saidur, R., & Metselaar, I. H. S. C. (2015). A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy conversion and management, 95, 69-89.
  • Wong-Pinto, L. S., Milian, Y., & Ushak, S. (2020). Progress on use of nanoparticles in salt hydrates as phase change materials. Renewable and Sustainable Energy Reviews, 122, 109727.
  • Tariq, S. L., Ali, H. M., Akram, M. A., Janjua, M. M., & Ahmadlouydarab, M. (2020). Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering, 176, 115305.
  • Ali, H. M., Janjua, M. M., Sajjad, U., & Yan, W. M. (2019). A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 135, 649-673.
  • Nomura, T., Okinaka, N., & Akiyama, T. (2009). Impregnation of porous material with phase change material for thermal energy storage. Materials Chemistry and Physics, 115(2-3), 846-850.
  • Zhou, D., & Zhao, C. Y. (2011). Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Applied Thermal Engineering, 31(5), 970-977.
  • Khadiran, T., Hussein, M. Z., Zainal, Z., & Rusli, R. (2015). Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78-98.
  • Su, W., Darkwa, J., & Kokogiannakis, G. (2015). Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 48, 373-391.
  • Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and sustainable energy reviews, 16(8), 5603-5616.
  • Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5, 100039.
  • Yazıcı, M. Y., Avcı, M., Aydın, O., & Akgun, M. (2014). Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study. Solar Energy, 101, 291-298.
  • Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., & Bahrampoury, R. (2016). Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renewable energy, 97, 344-357.
  • Cao, X., Yuan, Y., Xiang, B., & Haghighat, F. (2018). Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit. Sustainable cities and society, 38, 571-581.
  • Kumar, R., & Verma, P. (2020). An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit. Journal of Energy Storage, 30, 101396.
  • Zhang, S., Pu, L., Xu, L., & Ma, Z. (2021). Thermal and exergetic analysis of shell and eccentric-tube thermal energy storage. Journal of Energy Storage, 38, 102504.
  • Safari, V., Abolghasemi, H., Darvishvand, L., & Kamkari, B. (2021). Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material. Journal of Energy Storage, 37, 102458.
  • Khan, L. A., Khan, M. M., Ahmed, H. F., İrfan, M., Brabazon, D., & Ahad, I. U. (2021). Dominant roles of eccentricity, fin design, and nanoparticles in performance enhancement of latent thermal energy storage unit. Journal of Energy Storage, 43, 103181.
  • Zhou, H., Wei, L. Y., Cai, Q. L., Ren, X. Z., Bi, C. W., Zhong, D., & Liu, Y. (2021). Annulus eccentric analysis of the melting and solidification behavior in a horizontal tube-in-shell storage unit. Applied Thermal Engineering, 190, 116752.
  • Patel, J. R., Rathod, M. K., & Sheremet, M. (2022). Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin. Journal of Energy Storage, 50, 104167.
  • Darzi, A. R., Farhadi, M., & Sedighi, K. (2012). Numerical study of melting inside concentric and eccentric horizontal annulus. Applied Mathematical Modelling, 36(9), 4080-4086.
  • Brent, A. D., Voller, V. R., & Reid, K. T. J. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications, 13(3), 297-318.
  • Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.

Eccentricity in a Horizontal Latent Thermal Energy Storage Unit: Effects of Inner Tube Geometry

Year 2022, Volume: 63 Issue: 709, 672 - 688, 30.12.2022
https://doi.org/10.46399/muhendismakina.1139121

Abstract

The intermittency of solar energy has resulted in a urge to implement a buffer for providing constant and reliable energy in different sectors. Latent thermal energy storage solutions that use phase change materials have been the main focus of researchers due to their size, cost and near-constant operating temperatures. One of the main ways of performance improvement in concentric LTES units is changing the location of inner tube to introduce eccentricity and decrease the response and charging time of the unit. In this study, the eccentricity is implemented for different inner tube geometries, circle, square and triangle. The time dependent melting behavior of all the cases are presented by investigating the velocity, temperature and liquid fraction contours. The melting time is improved for all the cases with the triangle eccentric design having the lowest melting time. The charge time in the triangular case is decreased nearly 50% while the decrease is less significant for the circle and square designs. The natural convection improvement due to employment of eccentricity is the reason for the enhancements.

Project Number

-

References

  • Alva, G., Liu, L., Huang, X., & Fang, G. (2017). Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 68, 693-706.
  • Nkwetta, D. N., & Haghighat, F. (2014). Thermal energy storage with phase change material—A state-of-the art review. Sustainable cities and society, 10, 87-100.
  • Kamkari, B., & Shokouhmand, H. (2014). Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. International Journal of Heat and Mass Transfer, 78, 839-851.
  • Desai, A. N., Gunjal, A., & Singh, V. K. (2020). Numerical investigations of fin efficacy for phase change material (PCM) based thermal control module. International Journal of Heat and Mass Transfer, 147, 118855.
  • Fan, L., & Khodadadi, J. M. (2011). Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renewable and sustainable energy reviews, 15(1), 24-46.
  • Kibria, M. A., Anisur, M. R., Mahfuz, M. H., Saidur, R., & Metselaar, I. H. S. C. (2015). A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy conversion and management, 95, 69-89.
  • Wong-Pinto, L. S., Milian, Y., & Ushak, S. (2020). Progress on use of nanoparticles in salt hydrates as phase change materials. Renewable and Sustainable Energy Reviews, 122, 109727.
  • Tariq, S. L., Ali, H. M., Akram, M. A., Janjua, M. M., & Ahmadlouydarab, M. (2020). Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering, 176, 115305.
  • Ali, H. M., Janjua, M. M., Sajjad, U., & Yan, W. M. (2019). A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 135, 649-673.
  • Nomura, T., Okinaka, N., & Akiyama, T. (2009). Impregnation of porous material with phase change material for thermal energy storage. Materials Chemistry and Physics, 115(2-3), 846-850.
  • Zhou, D., & Zhao, C. Y. (2011). Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Applied Thermal Engineering, 31(5), 970-977.
  • Khadiran, T., Hussein, M. Z., Zainal, Z., & Rusli, R. (2015). Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review. Solar Energy Materials and Solar Cells, 143, 78-98.
  • Su, W., Darkwa, J., & Kokogiannakis, G. (2015). Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 48, 373-391.
  • Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and sustainable energy reviews, 16(8), 5603-5616.
  • Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5, 100039.
  • Yazıcı, M. Y., Avcı, M., Aydın, O., & Akgun, M. (2014). Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study. Solar Energy, 101, 291-298.
  • Pahamli, Y., Hosseini, M. J., Ranjbar, A. A., & Bahrampoury, R. (2016). Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renewable energy, 97, 344-357.
  • Cao, X., Yuan, Y., Xiang, B., & Haghighat, F. (2018). Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit. Sustainable cities and society, 38, 571-581.
  • Kumar, R., & Verma, P. (2020). An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit. Journal of Energy Storage, 30, 101396.
  • Zhang, S., Pu, L., Xu, L., & Ma, Z. (2021). Thermal and exergetic analysis of shell and eccentric-tube thermal energy storage. Journal of Energy Storage, 38, 102504.
  • Safari, V., Abolghasemi, H., Darvishvand, L., & Kamkari, B. (2021). Thermal performance investigation of concentric and eccentric shell and tube heat exchangers with different fin configurations containing phase change material. Journal of Energy Storage, 37, 102458.
  • Khan, L. A., Khan, M. M., Ahmed, H. F., İrfan, M., Brabazon, D., & Ahad, I. U. (2021). Dominant roles of eccentricity, fin design, and nanoparticles in performance enhancement of latent thermal energy storage unit. Journal of Energy Storage, 43, 103181.
  • Zhou, H., Wei, L. Y., Cai, Q. L., Ren, X. Z., Bi, C. W., Zhong, D., & Liu, Y. (2021). Annulus eccentric analysis of the melting and solidification behavior in a horizontal tube-in-shell storage unit. Applied Thermal Engineering, 190, 116752.
  • Patel, J. R., Rathod, M. K., & Sheremet, M. (2022). Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin. Journal of Energy Storage, 50, 104167.
  • Darzi, A. R., Farhadi, M., & Sedighi, K. (2012). Numerical study of melting inside concentric and eccentric horizontal annulus. Applied Mathematical Modelling, 36(9), 4080-4086.
  • Brent, A. D., Voller, V. R., & Reid, K. T. J. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications, 13(3), 297-318.
  • Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ozgur Bayer 0000-0003-0508-2263

Project Number -
Publication Date December 30, 2022
Submission Date July 2, 2022
Acceptance Date September 8, 2022
Published in Issue Year 2022 Volume: 63 Issue: 709

Cite

APA Bayer, O. (2022). Bir Yatay Gizli Isıl Enerji Depolama Biriminde Eksantriklik: İç Boru Geometrisinin Etkileri. Mühendis Ve Makina, 63(709), 672-688. https://doi.org/10.46399/muhendismakina.1139121

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520