Research Article
BibTex RIS Cite

OPTIMIZATION OF A THERMOELECTRIC COOLER FOR A TURBOCHARGED TRACTOR

Year 2024, Issue: 715, 307 - 340, 16.07.2024

Abstract

This work covers a numerical analysis of the design and optimization of a thermoelectric cooler (TEC) operated by a thermoelectric generator (TEG). The aim of the work was to design the optimum mini refrigerator for tractors and also to provide cooling using the energy produced in the TEG used in the tractor. Thanks to the TEC powered with the TEG system, farmers will be able to preserve their food during working hours without additional fuel consumption. When the literature is examined, no study has been found in which cooling is done by using the compressor air of turbocharged systems. Therefore, this work will make an important contribution to the literature. According to the numerical results obtained, while the electrical power requirement was 34.78 W at an outdoor temperature of 30 °C, it was 26.54 W at an outdoor temperature of 15 °C. In other words, while the coefficient of performance was obtained as 0.301 at 15 °C, it was determined as 0.219 at 30 °C. In addition, while the electrical power value produced by the TEG system used in the tractor for an outdoor temperature of 15 °C was 50.71 W, it was 38.84 W at an outdoor temperature of 30 °C.

References

  • Attar, A., Lee, H., & Weera, S. (2015). Experimental Validation of the Optimum Design of an Automotive Air-to-Air Thermoelectric Air Conditioner (TEAC). Journal of Electronic Materials, 44, 2177–2185. Doi: https://doi.org/10.1007/s11664-015-3750-4
  • Arıcıoğlu, A. K. (2021). The use of electric energy obtained from thermoelectric generator in thermoelectric coolers of different sizes (M.Sc. dissertation). Department of Mechanical Engineering, Pamukkale University, Denizli, Turkey.
  • Cheng, Y.-H., & Lin, W.-K. (2005). Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms. Applied Thermal Engineering, 25, 2983–2997. Doi: https://doi.org/10.1016/j.applthermaleng.2005.03.007
  • Chen, L., Meng, F., & Sun, F. (2012). Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 52, 58-65. Doi: https://doi.org/10.1016/j.cryogenics.2011.10.007
  • Chen, W.-H., Wang, C.-C., & Hung, C.-I. (2014). Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Conversion and Management, 87, 566–575. Doi: https://doi.org/10.1016/j.enconman.2014.07.054
  • Chen, W.-Y., Shi, X.-L., Zou, J., & Chen, Z.-G. (2022). Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. Materials Science & Engineering R-Reports, 151, 100700. Doi: https://doi.org/10.1016/j.mser.2022.100700
  • Feng, Y., Chen, L., Meng, F., & Sun, F. (2018). Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect. Journal of Non-Equilibrium Thermodynamics, 43, 75–86. Doi: https://doi.org/10.1515/jnet-2017-0029
  • Gonzalez-Hernandez, S. (2020). Unification of optimization criteria and energetic analysis of a thermoelectric cooler and heater. Physica A: Statistical Mechanics and Its Applications, 555, 124700. Doi: https://doi.org/10.1016/j.physa.2020.124700
  • Gürcan, A., & Yakar, G. (2022). Investigation of the performance of a thermoelectric generator system utilizing the thermal energy of air compressed in a compressor. Journal of the Korean Physical Society, 80, 467–483. Doi: https://doi.org/10.1007/s40042-022-00425-x
  • Gürcan, A., & Yakar, G. (2022). Improving the performance of a thermoelectric generator system utilizing the thermal energy of air compressed in the compressor of a turbocharged tractor based on different‑sized modules. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, 360. Doi: https://doi.org/10.1007/s40430-022-03656-y
  • Gürcan, A. (2019). Recovery of exhaust heat energy using thermoelectric generators in different sizes (M.Sc. dissertation). Department of Mechanical Engineering, Pamukkale University, Denizli, Turkey.
  • Hasani, M., & Rahbar, N. (2015). Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – An experimental study. International Journal of Hydrogen Energy, 40, 15040–15051. Doi: https://doi.org/10.1016/j.ijhydene.2015.09.023
  • Huang, Y., Chen, Z., & Ding, H. (2021). Performance optimization of a two-stage parallel thermoelectric cooler with inhomogeneous electrical conductivity. Applied Thermal Engineering, 192, 116696. Doi: https://doi.org/10.1016/j.applthermaleng.2021.116696
  • Khattab, N. M., & El Shenawy, E. T. (2006). Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Conversion and Management, 47, 407-426. Doi: https://doi.org/10.1016/j.enconman.2005.04.011
  • Kishore, R. A., Nozariasbmarz, A., Poudel, B., Sanghadasa, M., & Priya, S. (2019). Ultra-high performance wearable thermoelectric coolers with less materials. Nature Communications, 10, 1765. Doi: https://doi.org/10.1038/s41467-019-09707-8
  • Kwan, T. H., Gao, D., Zhao, B., Ren, X., Hu, T., Dabwan, Y. N., & Pei, G. (2021). Integration of radiative sky cooling to the photovoltaic and thermoelectric system for improved space cooling. Applied Thermal Engineering, 196, 117230. Doi: https://doi.org/10.1016/j.applthermaleng.2021.117230
  • Kryotherm, (2018). Access address: http://kryothermtec.com/catalogs.html.
  • Lin, L., Zhang, Y.-F., Liu, H.-B., Meng, J.-H., Chen, W.-H., & Wang, X.-D. (2019). A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, 160, 114087. Doi: https://doi.org/10.1016/j.applthermaleng.2019.114087
  • Lu, T., Li, Y., Zhang, J., Ning, P., & Niu, P. (2020). Cooling and Mechanical Performance Analysis of a Trapezoidal Thermoelectric Cooler with Variable Cross-Section. Energies, 13, 6070. Doi: https://doi.org/10.3390/en13226070
  • Lee, H. S. (2010). Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells. Hoboken, NJ: Wiley.
  • Lee, H. S. (2017). Thermoelectrics: design and materials. Chichester: Wiley.
  • Meng, F. K., Chen, L. G., & Sun, F. R. (2010). Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator. Journal of Energy Institute, 83, 108-113. Doi: https://doi.org/10.1016/10.1179/014426010x12682307291506
  • Manikandan, S., & Kaushik, S. C. (2015). Thermodynamic studies and maximum power point tracking in thermoelectric generator–thermoelectric cooler combined system. Cryogenics, 67, 52–62. Doi: https://doi.org/10.1016/10.1016/j.cryogenics.2015.01.008
  • Nemati, A., Nami, H., Yari, M., & Ranjbar, F. (2018) Effect of geometry and applied currents on the exergy and exergoeconomic performance of a two-stage cascaded thermoelectric cooler. International Journal of Refrigeration, 85, 1–12. Doi: https://doi.org/10.1016/10.1016/j.ijrefrig.2017.09.006
  • Qiu, C., & Shi, W. (2020). Comprehensive modeling for optimized design of a thermoelectric cooler with non-constant cross-section: Theoretical considerations. Applied Thermal Engineering, 176, 115384. Doi: https://doi.org/10.1016/10.1016/j.applthermaleng.2020.115384
  • Sun, D., Liu, G., Shen, L., Chen, H., Yao, Y., & Jin, S. (2019). Modeling of high power light-emitting diode package integrated with micro-thermoelectric cooler under various interfacial and size effects. Energy Conversion and Management, 179, 81–90. Doi: https://doi.org/10.1016/j.enconman.2018.10.063
  • Sadighi Dizaji, H., Jafarmadar, S., Khalilarya, S., & Pourhedayat, S. (2019). A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation. Renewable Energy, 131, 308–317. Doi: https://doi.org/10.1016/j.renene.2018.07.056
  • Shen, L., Zhang, W., Liu, G., Tu, Z., Lu, Q., Chen, H., & Huang, Q. (2020). Performance enhancement investigation of thermoelectric cooler with segmented configuration. Applied Thermal Engineering, 168, 114852. Doi: https://doi.org/10.1016/j.applthermaleng.2019.114852
  • Sun, D., Shen, L., Niu, B., Gao, C., Zhou, P., Tang, J., … Yang, L. (2022). Active thermal management of hotspot under thermal shock based on micro-thermoelectric cooler and bi-objective optimization. Energy Conversion and Management, 252, 115044. Doi: https://doi.org/10.1016/j.enconman.2021.115044
  • Tian, X.-X., Asaadi, S., Moria, H., Kaood, A., Pourhedayat, S., & Jermsittiparsert, K. (2020). Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler. Energy, 208, 118428. Doi: https://doi.org/10.1016/j.energy.2020.118428
  • Zhang, H., Kong, W., Dong, F., Xu, H., Chen, B., & Ni, M. (2017). Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management, 148, 1382–1390. Doi: https://doi.org/10.1016/j.enconman.2017.06.089

TURBOŞARJLI BİR TRAKTÖR İÇİN BİR TERMOELEKTRİK SOĞUTUCUNUN OPTİMİZASYONU

Year 2024, Issue: 715, 307 - 340, 16.07.2024

Abstract

Bu çalışma, bir termoelektrik jeneratör (TEJ) tarafından çalıştırılan bir termoelektrik soğutucunun (TES) tasarımı ve optimizasyonunun sayısal bir analizini kapsamaktadır. Çalışmada, traktörler için optimum mini buzdolabının dizayn edilmesi ve aynı zamanda traktörde kullanılan TEJ’de üretilen enerji ile soğutmanın sağlanması amaçlandı. TEJ sistemi ile çalıştırılan TES sayesinde çiftçiler, ek yakıt tüketimine gerek kalmadan, mesai saatleri içerisinde gıdalarını muhafaza edebilecekler. Literatür incelendiğinde, turboşarjlı sistemlerin kompresör havası kullanılarak soğutmanın yapıldığı herhangi bir çalışmaya rastlanmamıştır. Dolayısıyla bu çalışma, literatüre önemli bir katkı sağlayacaktır. Elde edilen sayısal sonuçlara göre, elektrik gücü ihtiyacı 30 °C dış sıcaklıkta 34,78 W iken, 15 °C dış sıcaklıkta 26,54 W olarak elde edilmiştir. Yani performans katsayısı 15 °C’de 0,301 olarak elde edilirken, 30 °C’de 0,219 olarak belirlendi. Ayrıca traktörde kullanılan TEJ sisteminin, 15 °C dış ortam sıcaklığında ürettiği elektrik gücü değeri 50,71 W iken, 30 °C dış ortam sıcaklığında 38,84 W olmuştur.

Thanks

The authors are thankful to the Pamukkale University Scientific Research Projects Council (Report No. 2018FEBE035) for providing financial support to conduct Gürcan (2019)’s Master Thesis.

References

  • Attar, A., Lee, H., & Weera, S. (2015). Experimental Validation of the Optimum Design of an Automotive Air-to-Air Thermoelectric Air Conditioner (TEAC). Journal of Electronic Materials, 44, 2177–2185. Doi: https://doi.org/10.1007/s11664-015-3750-4
  • Arıcıoğlu, A. K. (2021). The use of electric energy obtained from thermoelectric generator in thermoelectric coolers of different sizes (M.Sc. dissertation). Department of Mechanical Engineering, Pamukkale University, Denizli, Turkey.
  • Cheng, Y.-H., & Lin, W.-K. (2005). Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms. Applied Thermal Engineering, 25, 2983–2997. Doi: https://doi.org/10.1016/j.applthermaleng.2005.03.007
  • Chen, L., Meng, F., & Sun, F. (2012). Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 52, 58-65. Doi: https://doi.org/10.1016/j.cryogenics.2011.10.007
  • Chen, W.-H., Wang, C.-C., & Hung, C.-I. (2014). Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Conversion and Management, 87, 566–575. Doi: https://doi.org/10.1016/j.enconman.2014.07.054
  • Chen, W.-Y., Shi, X.-L., Zou, J., & Chen, Z.-G. (2022). Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization. Materials Science & Engineering R-Reports, 151, 100700. Doi: https://doi.org/10.1016/j.mser.2022.100700
  • Feng, Y., Chen, L., Meng, F., & Sun, F. (2018). Thermodynamic Analysis of TEG-TEC Device Including Influence of Thomson Effect. Journal of Non-Equilibrium Thermodynamics, 43, 75–86. Doi: https://doi.org/10.1515/jnet-2017-0029
  • Gonzalez-Hernandez, S. (2020). Unification of optimization criteria and energetic analysis of a thermoelectric cooler and heater. Physica A: Statistical Mechanics and Its Applications, 555, 124700. Doi: https://doi.org/10.1016/j.physa.2020.124700
  • Gürcan, A., & Yakar, G. (2022). Investigation of the performance of a thermoelectric generator system utilizing the thermal energy of air compressed in a compressor. Journal of the Korean Physical Society, 80, 467–483. Doi: https://doi.org/10.1007/s40042-022-00425-x
  • Gürcan, A., & Yakar, G. (2022). Improving the performance of a thermoelectric generator system utilizing the thermal energy of air compressed in the compressor of a turbocharged tractor based on different‑sized modules. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44, 360. Doi: https://doi.org/10.1007/s40430-022-03656-y
  • Gürcan, A. (2019). Recovery of exhaust heat energy using thermoelectric generators in different sizes (M.Sc. dissertation). Department of Mechanical Engineering, Pamukkale University, Denizli, Turkey.
  • Hasani, M., & Rahbar, N. (2015). Application of thermoelectric cooler as a power generator in waste heat recovery from a PEM fuel cell – An experimental study. International Journal of Hydrogen Energy, 40, 15040–15051. Doi: https://doi.org/10.1016/j.ijhydene.2015.09.023
  • Huang, Y., Chen, Z., & Ding, H. (2021). Performance optimization of a two-stage parallel thermoelectric cooler with inhomogeneous electrical conductivity. Applied Thermal Engineering, 192, 116696. Doi: https://doi.org/10.1016/j.applthermaleng.2021.116696
  • Khattab, N. M., & El Shenawy, E. T. (2006). Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Conversion and Management, 47, 407-426. Doi: https://doi.org/10.1016/j.enconman.2005.04.011
  • Kishore, R. A., Nozariasbmarz, A., Poudel, B., Sanghadasa, M., & Priya, S. (2019). Ultra-high performance wearable thermoelectric coolers with less materials. Nature Communications, 10, 1765. Doi: https://doi.org/10.1038/s41467-019-09707-8
  • Kwan, T. H., Gao, D., Zhao, B., Ren, X., Hu, T., Dabwan, Y. N., & Pei, G. (2021). Integration of radiative sky cooling to the photovoltaic and thermoelectric system for improved space cooling. Applied Thermal Engineering, 196, 117230. Doi: https://doi.org/10.1016/j.applthermaleng.2021.117230
  • Kryotherm, (2018). Access address: http://kryothermtec.com/catalogs.html.
  • Lin, L., Zhang, Y.-F., Liu, H.-B., Meng, J.-H., Chen, W.-H., & Wang, X.-D. (2019). A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, 160, 114087. Doi: https://doi.org/10.1016/j.applthermaleng.2019.114087
  • Lu, T., Li, Y., Zhang, J., Ning, P., & Niu, P. (2020). Cooling and Mechanical Performance Analysis of a Trapezoidal Thermoelectric Cooler with Variable Cross-Section. Energies, 13, 6070. Doi: https://doi.org/10.3390/en13226070
  • Lee, H. S. (2010). Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells. Hoboken, NJ: Wiley.
  • Lee, H. S. (2017). Thermoelectrics: design and materials. Chichester: Wiley.
  • Meng, F. K., Chen, L. G., & Sun, F. R. (2010). Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator. Journal of Energy Institute, 83, 108-113. Doi: https://doi.org/10.1016/10.1179/014426010x12682307291506
  • Manikandan, S., & Kaushik, S. C. (2015). Thermodynamic studies and maximum power point tracking in thermoelectric generator–thermoelectric cooler combined system. Cryogenics, 67, 52–62. Doi: https://doi.org/10.1016/10.1016/j.cryogenics.2015.01.008
  • Nemati, A., Nami, H., Yari, M., & Ranjbar, F. (2018) Effect of geometry and applied currents on the exergy and exergoeconomic performance of a two-stage cascaded thermoelectric cooler. International Journal of Refrigeration, 85, 1–12. Doi: https://doi.org/10.1016/10.1016/j.ijrefrig.2017.09.006
  • Qiu, C., & Shi, W. (2020). Comprehensive modeling for optimized design of a thermoelectric cooler with non-constant cross-section: Theoretical considerations. Applied Thermal Engineering, 176, 115384. Doi: https://doi.org/10.1016/10.1016/j.applthermaleng.2020.115384
  • Sun, D., Liu, G., Shen, L., Chen, H., Yao, Y., & Jin, S. (2019). Modeling of high power light-emitting diode package integrated with micro-thermoelectric cooler under various interfacial and size effects. Energy Conversion and Management, 179, 81–90. Doi: https://doi.org/10.1016/j.enconman.2018.10.063
  • Sadighi Dizaji, H., Jafarmadar, S., Khalilarya, S., & Pourhedayat, S. (2019). A comprehensive exergy analysis of a prototype Peltier air-cooler; experimental investigation. Renewable Energy, 131, 308–317. Doi: https://doi.org/10.1016/j.renene.2018.07.056
  • Shen, L., Zhang, W., Liu, G., Tu, Z., Lu, Q., Chen, H., & Huang, Q. (2020). Performance enhancement investigation of thermoelectric cooler with segmented configuration. Applied Thermal Engineering, 168, 114852. Doi: https://doi.org/10.1016/j.applthermaleng.2019.114852
  • Sun, D., Shen, L., Niu, B., Gao, C., Zhou, P., Tang, J., … Yang, L. (2022). Active thermal management of hotspot under thermal shock based on micro-thermoelectric cooler and bi-objective optimization. Energy Conversion and Management, 252, 115044. Doi: https://doi.org/10.1016/j.enconman.2021.115044
  • Tian, X.-X., Asaadi, S., Moria, H., Kaood, A., Pourhedayat, S., & Jermsittiparsert, K. (2020). Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler. Energy, 208, 118428. Doi: https://doi.org/10.1016/j.energy.2020.118428
  • Zhang, H., Kong, W., Dong, F., Xu, H., Chen, B., & Ni, M. (2017). Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells. Energy Conversion and Management, 148, 1382–1390. Doi: https://doi.org/10.1016/j.enconman.2017.06.089
There are 31 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Ali Kürşad Arıcıoğlu 0000-0001-6293-4237

Gülay Yakar 0000-0002-1865-7815

Ali Gürcan 0000-0002-2745-1413

Early Pub Date June 25, 2024
Publication Date July 16, 2024
Submission Date January 29, 2024
Acceptance Date March 15, 2024
Published in Issue Year 2024 Issue: 715

Cite

APA Arıcıoğlu, A. K., Yakar, G., & Gürcan, A. (2024). OPTIMIZATION OF A THERMOELECTRIC COOLER FOR A TURBOCHARGED TRACTOR. Mühendis Ve Makina(715), 307-340.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520