Araştırma Makalesi
BibTex RIS Kaynak Göster

LAZER TOZ YATAĞI FÜZYON YÖNTEMI ILE ÜRETILMIŞ ÇOKLU MORFOLOJI KAFES YAPILARININ BOYUTSAL SAPMASININ TERMOMEKANIK SIMÜLASYONLARA BAĞLI NITELIKSEL BIR KARŞILAŞTIRMASI

Yıl 2024, Sayı: 717, 643 - 658, 27.12.2024

Öz

Çoklu morfoloji kafes yapılar, mühendislik uygulama ihtiyaçlarına göre farklı konfigürasyonlardaki farklı tipteki kafes yapılarının oluşturduğu kompozit kafes yapılarıdır. Bu tip kafesler, başta lazer toz yatağı füzyon prosesi olmak üzere, eklemeli imalat yöntemleriyle üretilebilir. Ancak bu bileşenlerin imalatında harcanan yüksek maliyet ve zaman nedeniyle, üretilen parçaların özelliklerinin imalattan önce sayısal yöntemlerle tahmin edilmesi gerekmektedir. Bu çalışma, lazer toz yatağı füzyon prosesi ile üretilen Schoen Gyroid, Schwarz Diamond, Schwarz Primitive, Schoen FRD ve Neovius topolojilerinden oluşan çoklu morfoloji kafes yapılarının boyutsal sapmasının termomekanik simülasyonlar yoluyla niteliksel olarak tahmin edilmesine odaklanmıştır. Karşılaştırmalar sayısal çalışma sonuçlarına göre yapıldığından sadece niteliksel değerlendirmeler yapılmıştır. Bu çalışmada incelenen çoklu morfoloji kafes yapılar arasında, merkezde Schoen FRD topolojisi ve dış bölgede Schwarz Primitive topolojisi olan yapı en düşük sapmaları gösterirken, merkezde Schoen FRD topolojisi ve dış bölgede Schwarz Diamond topolojisi olan yapı en yüksek sapmaları göstermiştir. Ayrıca dış bölgeye Schoen FRD veya Schwarz Primitive topolojilerinin eklenmesinin azami sapmaları azalttığı, Schoen Gyroid veya Schwarz Diamond topolojilerinin eklenmesinin ise azami sapmaları arttırdığı gösterilmiştir.

Kaynakça

  • Al-Ketan, O., Lee, D., Rowshan, R., & Abu Al-Rub, R. K. (2020). Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 102, 103520. Doi: https://doi.org/10.1016/j.jmbbm.2019.103520.
  • Ataollahi, S. (2023). A review on additive manufacturing of lattice structures in tissue engineering. Bioprinting, 35, e00304. Doi: https://doi.org/10.1016/j.bprint.2023.e00304.
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., & Silva, F. S. (2020). Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Materials Science and Engineering: C, 107, 110342. Doi: https://doi.org/10.1016/j.msec.2019.110342.
  • Bartolomeu, F., Fonseca, J., Peixinho, N., Alves, N., Gasik, M., Silva, F. S., & Miranda, G. (2019). Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants. Journal of Mechanical Behaviors of Biomedical Materials, 99, 104-117. Doi: https://doi.org/10.1016/j.jmbbm.2019.07.023.
  • Calignano, F. (2018). Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual and Physical Prototyping, 13 (2), 97-104. Doi: https://doi.org/10.1080/17452759.2018.1426368.
  • Denlinger, E. R. (2015). Thermo-mechanical model development and experimental validation for metallic parts in additive manufacturing. (Doctoral Thesis). The Pennsylvania State University, Pennsylvania, USA.
  • Denlinger, E. R., Gouge, M., Irwin, J., & Michaleris, P. (2017). Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process. Additive Manufacturing, 16, 73-80. Doi: https://doi.org/10.1016/j.addma.2017.05.001.
  • Fergani, O., Berto, F., Welo, T., & Liang, S. Y. (2017). Analytical modelling of residual stress in additive manufacturing. Fatigue and Fracture of Engineering Materials and Structures, 40 (6), 971-978. Doi: https://doi.org/10.1111/ffe.12560.
  • Gülcan, O., Simsek, U., Cokgunlu, O., Özdemir, M., Şendur, P., & Yapici, G. G. (2022). Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design. Metals, 12, 1104. Doi: https://doi.org/10.3390/met12071104.
  • Gülcan, O., Simsek, U., Özdemir, M., Günaydın, K., & Tekoğlu, E. (2024). The effect of build parameters on distortion, dimensional deviation and surface roughness of laser powder bed fusion built lattice structures. Journal of the Faculty of Engineering and Architecture of Gazi University. 39 (1), 101-112. Doi: https://doi.org/10.17341/gazimmfd.1168768.
  • Ma, S., Song, K., Lan, J., & Ma, L. (2020). Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS. Journal of the Mechanical Behavior of Biomedical Materials, 107, 103727. Doi: https://doi.org/10.1016/j.jmbbm.2020.103727.
  • Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 183, 108137. Doi: https://doi.org/10.1016/j.matdes.2019.108137.
  • Novak, N., Al-Ketan, O., Borovinšek, M., Krstulović-Opara, L., Rowshan, R., Vesenjak, M., & Ren, Z. (2021). Development of novel hybrid TPMS cellular lattices and their mechanical characterisation. Journal of Materials Research and Technology, 15, 1318-1329. Doi: https://doi.org/10.1016/j.jmrt.2021.08.092.
  • Ozdemir, M., Simsek, U., Kiziltas, G., Gayir, C. E., Celik, A., & Sendur, P. (2023). A novel design framework for generating functionally graded multi-morphology lattices via hybrid optimization and blending methods. Additive Manufacturing, 70, 103560. Doi: https://doi.org/10.1016/j.addma.2023.103560.
  • Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., & Cai, K. (2018). Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 84, 1-11. Doi: https://doi.org/10.1016/j.jmbbm.2018.04.010.
  • Sefene, E. M. (2022). State-of-the-art selective laser melting process: A comprehensive review. Journal of Manufacturing Systems, 63, 250-274. Doi: https://doi.org/10.1016/j.jmsy.2022.04.002.
  • Sing, S. L., Miao, Y., Wiria, F. E., & Yeong, W. Y. (2016). Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review. Biomedical Science and Engineering, 2 (11), 18–24. Doi: https://doi.org/10.4081/bse.2016.11.
  • Wang, D., Wu, S., Bai, Y., Lin, H., Yang, Y., & Song, C. (2017). Characteristics of typical geometrical features shaped by selective laser melting. Journal of Laser Applications, 29, 022007. Doi: https://doi.org/10.2351/1.4980164.
  • Xi, H., Zhou, Z., Zhang, H., Huang, S., & Xiao, H. (2023). Multi-morphology TPMS structures with multi-stage yield stress platform and multi-level energy absorption: Design, manufacturing, and mechanical properties. Engineering Structures, 294, 116733. Doi: https://doi.org/10.1016/j.engstruct.2023.116733.
  • Xu, Z., Mendola, I. L., Razavi, N., & Bagherifard, S. (2023). Additive manufactured Triply Periodical Minimal Surface lattice structures with modulated hybrid topology. Engineering Structures, 289, 116249. Doi: https://doi.org/10.1016/j.engstruct.2023.116249.
  • Yang, N., Tian, Y., & Zhang, D. (2015). Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering. Medical Engineering & Physics, 37 (11), 1037-1046. Doi: https://doi.org/10.1016/j.medengphy.2015.08.006.
  • Yin, H., Zhang, W., Zhu, L., Meng, F., Liu, J., & Wen, G. (2023). Review on lattice structures for energy absorption properties. Composite Structures, 304 (1), 116397. Doi: https://doi.org/10.1016/j.compstruct.2022.116397.

A QUALITATIVE COMPARISON OF DIMENSIONAL DEVIATION OF LASER POWDER BED FUSION PROCESSED MULTI MORPHOLOGY LATTICE STRUCTURES BASED ON THERMOMECHANICAL SIMULATIONS

Yıl 2024, Sayı: 717, 643 - 658, 27.12.2024

Öz

Multi morphology lattices are composite lattice structures formed by different types of lattice structures in different configurations based on engineering application needs. These types of lattices can be manufactured with additive manufacturing modalities, specifically laser powder bed fusion process. However, due to the high cost and time spent on manufacturing these components, it is necessary to predict the properties of manufactured parts before build with numerical methods. This study focused on prediction of dimensional deviation of laser powder bed fusion produced multi morphology lattice structures composed of Schoen Gyroid, Schwarz Diamond, Schwarz Primitive, Schoen FRD and Neovius topologies via thermomechanical simulations qualitatively. Since the comparisons were made based on numerical study results, only qualitative assessments were performed. Among multi morphology lattices investigated in the present study, Schoen FRD topology at the center and Schwarz Primitive topology at the outer region showed the lowest deviations and Schoen FRD topology at the center and Schwarz Diamond topology at the outer region showed the highest deviations. It was also shown that adding Schoen FRD or Schwarz Primitive topologies at the outer region reduces the max. deviations, and Schoen Gyroid or Schwarz Diamond topologies increases the max. deviations.

Kaynakça

  • Al-Ketan, O., Lee, D., Rowshan, R., & Abu Al-Rub, R. K. (2020). Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 102, 103520. Doi: https://doi.org/10.1016/j.jmbbm.2019.103520.
  • Ataollahi, S. (2023). A review on additive manufacturing of lattice structures in tissue engineering. Bioprinting, 35, e00304. Doi: https://doi.org/10.1016/j.bprint.2023.e00304.
  • Bartolomeu, F., Dourado, N., Pereira, F., Alves, N., Miranda, G., & Silva, F. S. (2020). Additive manufactured porous biomaterials targeting orthopedic implants: A suitable combination of mechanical, physical and topological properties. Materials Science and Engineering: C, 107, 110342. Doi: https://doi.org/10.1016/j.msec.2019.110342.
  • Bartolomeu, F., Fonseca, J., Peixinho, N., Alves, N., Gasik, M., Silva, F. S., & Miranda, G. (2019). Predicting the output dimensions, porosity and elastic modulus of additive manufactured biomaterial structures targeting orthopedic implants. Journal of Mechanical Behaviors of Biomedical Materials, 99, 104-117. Doi: https://doi.org/10.1016/j.jmbbm.2019.07.023.
  • Calignano, F. (2018). Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual and Physical Prototyping, 13 (2), 97-104. Doi: https://doi.org/10.1080/17452759.2018.1426368.
  • Denlinger, E. R. (2015). Thermo-mechanical model development and experimental validation for metallic parts in additive manufacturing. (Doctoral Thesis). The Pennsylvania State University, Pennsylvania, USA.
  • Denlinger, E. R., Gouge, M., Irwin, J., & Michaleris, P. (2017). Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process. Additive Manufacturing, 16, 73-80. Doi: https://doi.org/10.1016/j.addma.2017.05.001.
  • Fergani, O., Berto, F., Welo, T., & Liang, S. Y. (2017). Analytical modelling of residual stress in additive manufacturing. Fatigue and Fracture of Engineering Materials and Structures, 40 (6), 971-978. Doi: https://doi.org/10.1111/ffe.12560.
  • Gülcan, O., Simsek, U., Cokgunlu, O., Özdemir, M., Şendur, P., & Yapici, G. G. (2022). Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design. Metals, 12, 1104. Doi: https://doi.org/10.3390/met12071104.
  • Gülcan, O., Simsek, U., Özdemir, M., Günaydın, K., & Tekoğlu, E. (2024). The effect of build parameters on distortion, dimensional deviation and surface roughness of laser powder bed fusion built lattice structures. Journal of the Faculty of Engineering and Architecture of Gazi University. 39 (1), 101-112. Doi: https://doi.org/10.17341/gazimmfd.1168768.
  • Ma, S., Song, K., Lan, J., & Ma, L. (2020). Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS. Journal of the Mechanical Behavior of Biomedical Materials, 107, 103727. Doi: https://doi.org/10.1016/j.jmbbm.2020.103727.
  • Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 183, 108137. Doi: https://doi.org/10.1016/j.matdes.2019.108137.
  • Novak, N., Al-Ketan, O., Borovinšek, M., Krstulović-Opara, L., Rowshan, R., Vesenjak, M., & Ren, Z. (2021). Development of novel hybrid TPMS cellular lattices and their mechanical characterisation. Journal of Materials Research and Technology, 15, 1318-1329. Doi: https://doi.org/10.1016/j.jmrt.2021.08.092.
  • Ozdemir, M., Simsek, U., Kiziltas, G., Gayir, C. E., Celik, A., & Sendur, P. (2023). A novel design framework for generating functionally graded multi-morphology lattices via hybrid optimization and blending methods. Additive Manufacturing, 70, 103560. Doi: https://doi.org/10.1016/j.addma.2023.103560.
  • Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., & Cai, K. (2018). Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Journal of the Mechanical Behavior of Biomedical Materials, 84, 1-11. Doi: https://doi.org/10.1016/j.jmbbm.2018.04.010.
  • Sefene, E. M. (2022). State-of-the-art selective laser melting process: A comprehensive review. Journal of Manufacturing Systems, 63, 250-274. Doi: https://doi.org/10.1016/j.jmsy.2022.04.002.
  • Sing, S. L., Miao, Y., Wiria, F. E., & Yeong, W. Y. (2016). Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review. Biomedical Science and Engineering, 2 (11), 18–24. Doi: https://doi.org/10.4081/bse.2016.11.
  • Wang, D., Wu, S., Bai, Y., Lin, H., Yang, Y., & Song, C. (2017). Characteristics of typical geometrical features shaped by selective laser melting. Journal of Laser Applications, 29, 022007. Doi: https://doi.org/10.2351/1.4980164.
  • Xi, H., Zhou, Z., Zhang, H., Huang, S., & Xiao, H. (2023). Multi-morphology TPMS structures with multi-stage yield stress platform and multi-level energy absorption: Design, manufacturing, and mechanical properties. Engineering Structures, 294, 116733. Doi: https://doi.org/10.1016/j.engstruct.2023.116733.
  • Xu, Z., Mendola, I. L., Razavi, N., & Bagherifard, S. (2023). Additive manufactured Triply Periodical Minimal Surface lattice structures with modulated hybrid topology. Engineering Structures, 289, 116249. Doi: https://doi.org/10.1016/j.engstruct.2023.116249.
  • Yang, N., Tian, Y., & Zhang, D. (2015). Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering. Medical Engineering & Physics, 37 (11), 1037-1046. Doi: https://doi.org/10.1016/j.medengphy.2015.08.006.
  • Yin, H., Zhang, W., Zhu, L., Meng, F., Liu, J., & Wen, G. (2023). Review on lattice structures for energy absorption properties. Composite Structures, 304 (1), 116397. Doi: https://doi.org/10.1016/j.compstruct.2022.116397.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Orhan Gülcan 0000-0002-6688-2662

Kadir Günaydın 0000-0002-3045-130X

Ugur Simsek 0000-0002-4405-5420

Cemal Efe Gayir 0000-0002-0748-3055

Erken Görünüm Tarihi 11 Aralık 2024
Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 12 Ocak 2024
Kabul Tarihi 14 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 717

Kaynak Göster

APA Gülcan, O., Günaydın, K., Simsek, U., Gayir, C. E. (2024). A QUALITATIVE COMPARISON OF DIMENSIONAL DEVIATION OF LASER POWDER BED FUSION PROCESSED MULTI MORPHOLOGY LATTICE STRUCTURES BASED ON THERMOMECHANICAL SIMULATIONS. Mühendis Ve Makina(717), 643-658.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520