Susceptibility Weighted Imaging (SWI) and Gre T2* Imaging in the Diagnosis of Cerebral Cavernous Malformations: Our 3 Tesla Experience
Year 2022,
, 17 - 21, 29.04.2022
Bünyamin Güney
,
Önder Yeniçeri
,
Emrah Doğan
,
Neşat Çullu
Abstract
This study compares the visibility and morphological dimensionality of lesions in cerebral cavernous malformations (CCM) with SWI images and Gradient Echo T2*(GRE T2*) images for both sequences. A total of 57 patients with CCM (32 males, 25 females) aged between 14 and 80 (42.4±17.58) were included in our study. In cranial MR imaging, in addition to routine sequences, SWI and GRE T2* imaging were performed. CCMs were re-evaluated retrospectively in terms of the number, size and visibility of the lesions taken. The number of CCM detected in SWI imaging (n=97) was higher than those detected in GRE T2* images (n=69). The median (min-max) size of the lesions was 7.9 (3.7-45) mm in SWI images and 7.7 (3.6-42) mm in GRE T2 * images, and the difference was statistically significant (p<0.001). In addition, developmental venous anomaly accompanying CCM in 7 cases and focal type superficial siderosis accompanied in 4 cases were detected in our study. Focal-type SS findings accompanying CCM were more sharply and more detailed in SWI imaging. It is recommended in many studies in the literature to add SWI sequence to routine cranial MR imaging due to its diagnostic superiority in patients with SCM. In addition to the current literature, we found in this study that the SWI sequence showed lesions morphologically larger than the images taken in the GRE T2* sequence. Moreover, SWI imaging had a definitive diagnostic superiority compared to GRE T2* imaging in the detection of occult vascular malformation accompanying SCM and in the diagnosis of accompanying focal type superficial siderosis.
Keywords:
References
- 1. Barrow DL. Classification and natural history of cerebral vascular malformations: arteriovenous, cavernous and venous. J Stroke Cerebrovasc Dis. 1997;6:264–7.
- 2. Kim DS, Park YG, Choi JU, et al. An analysis of the natural history of cavernous malformations. Surg Neurol. 1997;48:9–17.
- 3. Labauge P, Brunereau L, Levy C, et al. The natural history of familial cerebral cavernomas: A retrospective MRI study of 40 patients. Neuroradiology. 2000;42:327–32.
- 4. 4. Jain R, Robertson PL, Gandhi D, et al. Radiation-induced cavernomas of the brain. Am J Neuroradiol. 2005;26:1158–62.
- 5. Lehnhardt FG, Von Smekal U, Ruckriem B, et al. Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol. 2005;62:653–8.
- 6. De Souza JM, Domingues RC, Cruz LC, Jr, et al. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: A comparison with T2-weighted fast spin-echo and gradient-echo sequences. Am J Neuroradiol. 2008;29:154–8.
- 7. Charidimou A, Linn J, Vernooij MW, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138(8):2126-39.
- 8. Jagadeesan BD, Delgado Almandoz JE, Moran CJ, Benzinger TL. Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke. 2011;42(1):87–92.
- 9. Stehling C, Wersching H, Kloska SP, et al. Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol. 2008;15:895–900.
- 10. Hegde AN, Mohan S, Lim CC. CNS cavernous haemangioma: “popcorn” in the brain and spinal cord. Clin Radiol. 2012;67:380-8.
- 11. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296-302.
- 12. Sparacia G, Speciale C, Banco A, et al. Accuracy of SWI sequences compared to T2*-weighted gradient echo sequences in the detection of cerebral cavernous malformations in the familial form. Neuroradiol J. 2016;29(5):326–35.
- 13. de Champfleur NM, Langlois C, Ankenbrandt WJ, et al. Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery. 2011;68:641-7.
- 14. Campbell PG, Jabbour P, Yadla S, et al. Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus. 2010;29:E6.
- 15. Moriarity JL, Wetzel M, Clatterbuck RE, et al. The natural history of cavernous malformations: a prospective study of 68 patients. Neurosurgery. 1999;44:1166-71-3.
- 16. Labauge P, Brunereau L, Levy C, et al. The natural history of familial cerebral cavernomas: a retrospective MRI study of 40 patients. Neuroradiology. 2000;42:327-32.
- 17. Boukobza M, Enjolras O, Guichard JP, et-al. Cerebral developmental venous anomalies associated with head and neck venous malformations. AJNR Am J Neuroradiol. 1996;17(5):987-94.
- 18. Sahin N, Solak A, Alkilic L. The Contribution of Susceptibility-weighted Imaging (SWI) in Occult Cerebral Vascular Malformations in Pediatric Patients. Clin Med Rev Case Rep. 2015;2:032.
- 19. Barnes SR, Haacke EM. Susceptibility-weighted imaging: clinical angiographic applications. Magn Reson Imaging Clin N Am. 2009;17:47–61.
- 20. Levy M, Turtzo C, Llinas RH. Superficial siderosis: a case report and review of the literature. Nat Clin Pract Neurol. 2007;3:54–8.
- 21. Li KW, Haroun RI, Clatterbuck RE, et al. Superficial siderosis associated with multiple cavernous malforma-tions: report of three cases. Neurosurgery. 2001;48:1147–50.
- 22. Takafumi Ogura, Atsushi Kambe, Makoto Sakamoto, et al. Superficial Siderosis Associated With Pineal Cavernous Malformation. World Neurosurg. 2018 ;109: 230-2.
Serebral Kavernöz Malformasyonların Tanısında Duyarlılık Ağırlıklı ve Gre T2* Görüntüleme: 3 Tesla Deneyimimiz
Year 2022,
, 17 - 21, 29.04.2022
Bünyamin Güney
,
Önder Yeniçeri
,
Emrah Doğan
,
Neşat Çullu
Abstract
Bu çalışma serebral kavernöz malformasyonların (SKM), SWI ve Gradient eko T2* (GRE T2*) görüntülerde saptanabilirliği ve lezyonların her iki sekanstaki boyutsal farklılıklarının karşılaştırılmasıdır. Çalışmamıza yaşları 14 ile 80 (42.4±17.58) arasında değişen toplam 57 SKM'li hasta (32 erkek, 25 kadın) dahil edildi. Kranial MR görüntülemede, rutin sekanslara ek olarak SWI ve GRE T2* görüntüleme yapıldı. SKM lezyonlarının sayısı, boyutu ve alınan sekansta görülebilirliği açısından retrospektif olarak tekrar değerlendirildi. SWI görüntülemede saptanmış SKM sayısı (n=97), GRE T2* görüntülerde saptananlara (n=69) göre yüksekti. Lezyonların medyan (min-max) boyutu, SWI görüntülerde 7.9 (3.7-45) mm, GRE T2* görüntülerde 7.7 (3.6-42) mm olup aradaki fark istatistiksel olarak anlamlıydı (p<0.001). Ayrıca çalışmamızda 7 olguda SKM’ye eşlik eden gelişimsel venöz anomali ve 4 olguda eşlik eden fokal tip yüzeyel siderozis saptandı. SKM’ye eşlik eden fokal tip yüzeyel siderozis bulgusu SWI görüntülemede daha keskin ve ayrıntılı izlendi. SKM düşünülen olgularda tanısal üstünlüğü nedeni ile rutin kranial MR görüntülemeye SWI sekansı eklenmesi literatürde pek çok çalışmada önerilmektedir. Biz bu çalışmada mevcut literatüre ek olarak, SWI sekansının GRE T2* sekansında alınan görüntülere kıyasla lezyonları morfolojik olarak daha büyük gösterdiğini saptadık. Ayrıca SWI görüntüleme, SKM’ye eşlik eden okkült vasküler malformasyon saptanmasında ve fokal tip yüzeyel siderozis tanısında GRE T2* görüntülemeye kıyasla kesin bir tanısal üstünlüğe sahiptir.
References
- 1. Barrow DL. Classification and natural history of cerebral vascular malformations: arteriovenous, cavernous and venous. J Stroke Cerebrovasc Dis. 1997;6:264–7.
- 2. Kim DS, Park YG, Choi JU, et al. An analysis of the natural history of cavernous malformations. Surg Neurol. 1997;48:9–17.
- 3. Labauge P, Brunereau L, Levy C, et al. The natural history of familial cerebral cavernomas: A retrospective MRI study of 40 patients. Neuroradiology. 2000;42:327–32.
- 4. 4. Jain R, Robertson PL, Gandhi D, et al. Radiation-induced cavernomas of the brain. Am J Neuroradiol. 2005;26:1158–62.
- 5. Lehnhardt FG, Von Smekal U, Ruckriem B, et al. Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol. 2005;62:653–8.
- 6. De Souza JM, Domingues RC, Cruz LC, Jr, et al. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: A comparison with T2-weighted fast spin-echo and gradient-echo sequences. Am J Neuroradiol. 2008;29:154–8.
- 7. Charidimou A, Linn J, Vernooij MW, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138(8):2126-39.
- 8. Jagadeesan BD, Delgado Almandoz JE, Moran CJ, Benzinger TL. Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke. 2011;42(1):87–92.
- 9. Stehling C, Wersching H, Kloska SP, et al. Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol. 2008;15:895–900.
- 10. Hegde AN, Mohan S, Lim CC. CNS cavernous haemangioma: “popcorn” in the brain and spinal cord. Clin Radiol. 2012;67:380-8.
- 11. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296-302.
- 12. Sparacia G, Speciale C, Banco A, et al. Accuracy of SWI sequences compared to T2*-weighted gradient echo sequences in the detection of cerebral cavernous malformations in the familial form. Neuroradiol J. 2016;29(5):326–35.
- 13. de Champfleur NM, Langlois C, Ankenbrandt WJ, et al. Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery. 2011;68:641-7.
- 14. Campbell PG, Jabbour P, Yadla S, et al. Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus. 2010;29:E6.
- 15. Moriarity JL, Wetzel M, Clatterbuck RE, et al. The natural history of cavernous malformations: a prospective study of 68 patients. Neurosurgery. 1999;44:1166-71-3.
- 16. Labauge P, Brunereau L, Levy C, et al. The natural history of familial cerebral cavernomas: a retrospective MRI study of 40 patients. Neuroradiology. 2000;42:327-32.
- 17. Boukobza M, Enjolras O, Guichard JP, et-al. Cerebral developmental venous anomalies associated with head and neck venous malformations. AJNR Am J Neuroradiol. 1996;17(5):987-94.
- 18. Sahin N, Solak A, Alkilic L. The Contribution of Susceptibility-weighted Imaging (SWI) in Occult Cerebral Vascular Malformations in Pediatric Patients. Clin Med Rev Case Rep. 2015;2:032.
- 19. Barnes SR, Haacke EM. Susceptibility-weighted imaging: clinical angiographic applications. Magn Reson Imaging Clin N Am. 2009;17:47–61.
- 20. Levy M, Turtzo C, Llinas RH. Superficial siderosis: a case report and review of the literature. Nat Clin Pract Neurol. 2007;3:54–8.
- 21. Li KW, Haroun RI, Clatterbuck RE, et al. Superficial siderosis associated with multiple cavernous malforma-tions: report of three cases. Neurosurgery. 2001;48:1147–50.
- 22. Takafumi Ogura, Atsushi Kambe, Makoto Sakamoto, et al. Superficial Siderosis Associated With Pineal Cavernous Malformation. World Neurosurg. 2018 ;109: 230-2.