Review
BibTex RIS Cite

Pathophysiology of Addiction

Year 2019, Volume: 6 Issue: 3, 166 - 170, 31.12.2019

Abstract

The use of alcohol, tobacco and illegal drugs, apart
from causing health problems, also 
increases the loss of labor and 
tendency to crime. Addiction not only occurs against substances, but
also varies as gambling, internet, eating, work, exercise and shopping
addiction. Although it can be treated, it is characterized by the high
frequency of recurrences. Brain parts, environmental and individual factors,
genetic characteristics play a major role in the development of addiction.
While the substance use causes addiction, they lead to changes in the reward
system, decision-making and memory related brain parts. The mesocorticolimbic
system is an important part of the reward system. Dopamine is the main
neurotransmitter in this system. Behaviors such as gambling, internet use,
eating and shopping also increase the release of dopamine by activating the
reward pathway, such as substances that cause addiction. Disorders in the
mesocorticolimbic pathway and associated brain parts play a role in the
formation of addiction. Apart from the dopaminergic mesocorticolimbic system,
other systems and neurotansmitters are thought to be effective in the
development of addiction.

References

  • 1. American Psychiatric Association and American Psychiatric Association DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 Washington, DC American Psychiatric Association, 2013.
  • 2. Harricharan R, Abboussi O, Daniels WMU. Addiction: A dysregulation of satiety and inflammatory processes. Prog Brain Res. 2017;235:65-91.
  • 3. Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56 Suppl 1:18-31.
  • 4. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry. Lancet Psychiatry. 2016;3(8):760-73.
  • 5. Volkow ND, Morales M. The Brain on Drugs: From Reward to Addiction. Cell. 2015;162(4):712-25.
  • 6. UNODC. World Drug Report 2017. United Nations Office on Drugs and Crime. 2017.
  • 7. van den Heuvel LL. Stahl’s essential psychopharmacology: Neuroscientific basis and practical applications 4th eds. J Child Adolesc Ment Heal. 2014.
  • 8. Pariyadath V, Gowin JL, Stein EA. Resting state functional connectivity analysis for addiction medicine: From individual loci to complex networks Prog Brain Res. 2016;224:155-73.
  • 9. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13(5):177-84.
  • 10. Margolis EB, Toy B, Himmels P, Morales M, Fields HL. Identification of rat ventral tegmental area GABAergic neurons. PLoS One. 2012;7(7): e42365.
  • 11. Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Prog Neurobiol. 2015;124:1-27.
  • 12. Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;11;490(7419):262-6.
  • 13. Jaworski JN, Kozel MA, Philpot KB, Kuhar MJ. Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity. J Pharmacol Exp Ther. 2003;307(3):1038-44.
  • 14. Hubert GW, Jones DC, Moffett MC, Rogge G, Kuhar MJ. CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem Pharmacol. 2008;75(1):57–62.
  • 15. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience. 2015;20;301:529-41.
  • 16. Howard CD, Li H, Geddes CE, Jin X. Dynamic Nigrostriatal Dopamine Biases Action Selection. Neuron. 2017;22:93(6):1436-50.
  • 17. Koob GF, Everitt BJ, Robbins TW. Reward, Motivation, and Addiction. In: Fundamental Neuroscience: 4th eds. 2013.
  • 18. Turton S, Lingford-Hughes A. Neurobiology and principles of addiction and tolerance. Medicine (United Kingdom). 2016;44(12):693–6.
  • 19. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-9.
  • 20. Koylu EO, Balkan B, Kuhar MJ, Pogun S. Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides. 2006;27(8):1956–69.
  • 21. Balkan B, Keser A, Gozen O, et al. Forced swim stress elicits region-specific changes in CART expression in the stress axis and stress regulatory brain areas. Brain Res. 2012;1432:56–65.
  • 22. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology 2001;158(4):343-59.
  • 23. Merikangas KR, Mehta RL, Molnar BE et al. Comorbidity of substance use disorders with mood and anxiety disorders: Results of the international Consortium in Psychiatric Epidemiology. Addict Behav. 1998;23(6):893-907.
  • 24. Department of Health. The Public Health Outcomes Framework for England, 2013-2016. Dep Heal. 2012;1–3.
  • 25. Klink R, de Kerchove d’Exaerde a, Zoli M, Changeux JP. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci. 2001;21(5):1452–63.
  • 26. Champtiaux N, Gotti C, Cordero-Erausquin M et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci. 2003;23(21):7820–9.
  • 27. Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci. 2002;22(9):3338–41.
  • 28. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW. Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol. 2000;393(1–3):51–8.
  • 29. Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59(1):11–34.
  • 30. Greenbaum L, Lerer B. Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry. 2009;14(10):912-45.
  • 31. Suarez S V, Amadon A, Giacomini E, et al. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: A BOLD fMRI study. Psychopharmacology. 2009;202(4):599–610.
  • 32. Benwell MEM, Balfour DJK, Birrell CE. Desensitization of the nicotine‐induced mesolimbic dopamine responses during constant infusion with nicotine. Br J Pharmacol. 1995;114(2):454–60.
  • 33. Kenny PJ, Markou A. Nicotine Self-Administration Acutely Activates Brain Reward Systems and Induces a Long-Lasting Increase in Reward Sensitivity. Neuropsychopharmacology. 2005;31(6):1203–11.
  • 34. Caille S, Guillem K, Cador M, Manzoni O, Georges F. Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons. J Neurosci. 2009;29(33):10410–5.
  • 35. Cadoni C, Di Chiara G. Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. Eur J Pharmacol. 2000;17:387(3):R23-5.
  • 36. Nisell M, Nomikos GG, Hertel P, Panagis G, Svensson TH. Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse. 1996;22(4):369–81.
  • 37. Balfour DJK. The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine Tob Res. 2004;6(6):899–912.
  • 38. Squeglia LM, Jacobus J, Tapert SF. The effect of alcohol use on human adolescent brain structures and systems. Handb Clin Neurol. 2014;125:501-10.
  • 39. Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology. 2020;45(1):141-65.
  • 40. Uhl GR, Koob GF, Cable J. The neurobiology of addiction. Ann N Y Acad Sci. 2019;1451(1):5-28.
  • 41. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5):194-202.
  • 42. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology.2010;35(1):217–38.

Bağımlılığın Patofizyolojisi

Year 2019, Volume: 6 Issue: 3, 166 - 170, 31.12.2019

Abstract

Alkol, sigara ve yasaklı
maddelerin kullanımı, yol açtığı sağlık problemlerinin yanında, iş gücünde
kayba ve suça eğilimde artmaya sebep olmasıyla, ortaya çıkan maddi ve manevi
hasarı daha da arttırmaktadır. Bağımlılık sadece maddelere karşı oluşmamakta,
kumar, internet, yeme, iş, egzersiz, alışveriş bağımlılığı gibi türlerle de
günümüzde giderek çeşitliliği artmaktadır. Tedavi edilebilmesine rağmen,
nükslerin sıklığı ile karakterizedir. Beyin yapıları, çevresel ve kişiye bağlı
etkenler, genetik özellikler bağımlılık gelişiminde rol oynamaktadır.
Kullanılan maddeler bağımlılık oluşumuna sebep olurken, ödül sistemi, karar
verme, hafıza ile ilgili beyin yapılarında değişikliklere yol açmaktadır.
Mezokortikolimbik sistem, ödül sisteminin önemli bir parçasını oluşturmaktadır.
Dopamin bu sistemdeki ana nörotransmiterdir. Kumar, internet kullanımı, yeme,
alışveriş gibi davranışlar da, bağımlılığa yol açan maddeler gibi ödül yolağını
aktive ederek, DA salımını arttırmaktadır. Mezokortikolimbik yolak ve
bağlantılı beyin yapılarındaki bozukluklar bağımlılık oluşumunda rol
oynamaktadır. Dopaminerjik mezokortikolimbik sistem dışında, başka sistem ve
nörotansmiterlerin de bağımlılık gelişiminde etkili olduğu düşünülmektedir

References

  • 1. American Psychiatric Association and American Psychiatric Association DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 Washington, DC American Psychiatric Association, 2013.
  • 2. Harricharan R, Abboussi O, Daniels WMU. Addiction: A dysregulation of satiety and inflammatory processes. Prog Brain Res. 2017;235:65-91.
  • 3. Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56 Suppl 1:18-31.
  • 4. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry. Lancet Psychiatry. 2016;3(8):760-73.
  • 5. Volkow ND, Morales M. The Brain on Drugs: From Reward to Addiction. Cell. 2015;162(4):712-25.
  • 6. UNODC. World Drug Report 2017. United Nations Office on Drugs and Crime. 2017.
  • 7. van den Heuvel LL. Stahl’s essential psychopharmacology: Neuroscientific basis and practical applications 4th eds. J Child Adolesc Ment Heal. 2014.
  • 8. Pariyadath V, Gowin JL, Stein EA. Resting state functional connectivity analysis for addiction medicine: From individual loci to complex networks Prog Brain Res. 2016;224:155-73.
  • 9. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13(5):177-84.
  • 10. Margolis EB, Toy B, Himmels P, Morales M, Fields HL. Identification of rat ventral tegmental area GABAergic neurons. PLoS One. 2012;7(7): e42365.
  • 11. Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Prog Neurobiol. 2015;124:1-27.
  • 12. Tritsch NX, Ding JB, Sabatini BL. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature. 2012;11;490(7419):262-6.
  • 13. Jaworski JN, Kozel MA, Philpot KB, Kuhar MJ. Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity. J Pharmacol Exp Ther. 2003;307(3):1038-44.
  • 14. Hubert GW, Jones DC, Moffett MC, Rogge G, Kuhar MJ. CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem Pharmacol. 2008;75(1):57–62.
  • 15. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience. 2015;20;301:529-41.
  • 16. Howard CD, Li H, Geddes CE, Jin X. Dynamic Nigrostriatal Dopamine Biases Action Selection. Neuron. 2017;22:93(6):1436-50.
  • 17. Koob GF, Everitt BJ, Robbins TW. Reward, Motivation, and Addiction. In: Fundamental Neuroscience: 4th eds. 2013.
  • 18. Turton S, Lingford-Hughes A. Neurobiology and principles of addiction and tolerance. Medicine (United Kingdom). 2016;44(12):693–6.
  • 19. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-9.
  • 20. Koylu EO, Balkan B, Kuhar MJ, Pogun S. Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides. 2006;27(8):1956–69.
  • 21. Balkan B, Keser A, Gozen O, et al. Forced swim stress elicits region-specific changes in CART expression in the stress axis and stress regulatory brain areas. Brain Res. 2012;1432:56–65.
  • 22. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology 2001;158(4):343-59.
  • 23. Merikangas KR, Mehta RL, Molnar BE et al. Comorbidity of substance use disorders with mood and anxiety disorders: Results of the international Consortium in Psychiatric Epidemiology. Addict Behav. 1998;23(6):893-907.
  • 24. Department of Health. The Public Health Outcomes Framework for England, 2013-2016. Dep Heal. 2012;1–3.
  • 25. Klink R, de Kerchove d’Exaerde a, Zoli M, Changeux JP. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci. 2001;21(5):1452–63.
  • 26. Champtiaux N, Gotti C, Cordero-Erausquin M et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci. 2003;23(21):7820–9.
  • 27. Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci. 2002;22(9):3338–41.
  • 28. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW. Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol. 2000;393(1–3):51–8.
  • 29. Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59(1):11–34.
  • 30. Greenbaum L, Lerer B. Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: recent progress and emerging open questions. Mol Psychiatry. 2009;14(10):912-45.
  • 31. Suarez S V, Amadon A, Giacomini E, et al. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: A BOLD fMRI study. Psychopharmacology. 2009;202(4):599–610.
  • 32. Benwell MEM, Balfour DJK, Birrell CE. Desensitization of the nicotine‐induced mesolimbic dopamine responses during constant infusion with nicotine. Br J Pharmacol. 1995;114(2):454–60.
  • 33. Kenny PJ, Markou A. Nicotine Self-Administration Acutely Activates Brain Reward Systems and Induces a Long-Lasting Increase in Reward Sensitivity. Neuropsychopharmacology. 2005;31(6):1203–11.
  • 34. Caille S, Guillem K, Cador M, Manzoni O, Georges F. Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons. J Neurosci. 2009;29(33):10410–5.
  • 35. Cadoni C, Di Chiara G. Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. Eur J Pharmacol. 2000;17:387(3):R23-5.
  • 36. Nisell M, Nomikos GG, Hertel P, Panagis G, Svensson TH. Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse. 1996;22(4):369–81.
  • 37. Balfour DJK. The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine Tob Res. 2004;6(6):899–912.
  • 38. Squeglia LM, Jacobus J, Tapert SF. The effect of alcohol use on human adolescent brain structures and systems. Handb Clin Neurol. 2014;125:501-10.
  • 39. Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology. 2020;45(1):141-65.
  • 40. Uhl GR, Koob GF, Cable J. The neurobiology of addiction. Ann N Y Acad Sci. 2019;1451(1):5-28.
  • 41. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5):194-202.
  • 42. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology.2010;35(1):217–38.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Egemen Kaya 0000-0003-0466-7294

Deniz Akpınar 0000-0002-7270-2373

Havva Akpınar 0000-0002-6309-8135

Publication Date December 31, 2019
Submission Date December 26, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

APA Kaya, E., Akpınar, D., & Akpınar, H. (2019). Bağımlılığın Patofizyolojisi. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 6(3), 166-170.
AMA Kaya E, Akpınar D, Akpınar H. Bağımlılığın Patofizyolojisi. MMJ. December 2019;6(3):166-170.
Chicago Kaya, Egemen, Deniz Akpınar, and Havva Akpınar. “Bağımlılığın Patofizyolojisi”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 6, no. 3 (December 2019): 166-70.
EndNote Kaya E, Akpınar D, Akpınar H (December 1, 2019) Bağımlılığın Patofizyolojisi. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 6 3 166–170.
IEEE E. Kaya, D. Akpınar, and H. Akpınar, “Bağımlılığın Patofizyolojisi”, MMJ, vol. 6, no. 3, pp. 166–170, 2019.
ISNAD Kaya, Egemen et al. “Bağımlılığın Patofizyolojisi”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 6/3 (December 2019), 166-170.
JAMA Kaya E, Akpınar D, Akpınar H. Bağımlılığın Patofizyolojisi. MMJ. 2019;6:166–170.
MLA Kaya, Egemen et al. “Bağımlılığın Patofizyolojisi”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, vol. 6, no. 3, 2019, pp. 166-70.
Vancouver Kaya E, Akpınar D, Akpınar H. Bağımlılığın Patofizyolojisi. MMJ. 2019;6(3):166-70.