Research Article
BibTex RIS Cite

Tip 2 Diyabet Mellitus Hastalarında FTO ve PPARG Genlerinin Metilasyon Profillerinin Belirlenmesi

Year 2024, Volume: 11 Issue: 3, 173 - 179, 18.12.2024
https://doi.org/10.47572/muskutd.1523669

Abstract

Tip 2 diyabet (T2DM), genetik yatkınlıklar, çevresel etkileşimler ve çeşitli genler tarafından yönlendirilen karmaşık bir metabolik hastalıktır. Günümüzde, giderek artan sayıda çalışma diyabetes mellitus (DM) ile epigenetik, özellikle DNA metilasyonu arasındaki ilişkiyi göstermektedir. Bu çalışmada, klinik olarak T2DM tanısı almış hastaların periferik kan örneklerinde yağ kütlesi ve obezite ilişkili (FTO) ve peroksizom proliferatör aktive reseptör gama (PPARG) metilasyon düzeylerini ölçmeyi amaçladık. Çalışmamızda, Endokrinoloji Polikliniğine başvuran T2DM hastalarından (n=43) ve yaş-cinsiyet eşleştirilmiş sağlıklı bireylerden (n=42) tam kan alındı. Tam kan örneklerinden izole edilen genomik DNA'ların bisülfit dönüşümünden sonra hedef genlerin metilasyon profilleri metil-spesifik PCR ve jel elektroforezi yöntemleri ile analiz edildi. İstatistiksel analizler sonrası, T2DM ve kontrol grupları arasında FTO metilasyon durumu açısından anlamlı bir fark bulunmadı. T2DM'de PPARG geninin metilasyon seviyesi kontrol grubuna kıyasla önemli ölçüde daha yüksekti. PPARG'nın insülin duyarlılığını artırıcı etkileri göz önüne alındığında, bulgularımız metilasyon aracılı PPARG gen ekspresyonunun baskılanmasının T2DM hastalarında insülin direncinin yükselmesine yol açabileceği olasılığını doğrulamaktadır. T2DM hastalarında PPARG genindeki metilasyonun etkilerini ve hastalıkla ilişkisini daha iyi anlamak için daha fazla hasta ve kantitatif yöntemlerle yürütülen daha fazla gen ekspresyonu çalışması gerekecektir.

Project Number

22.GAP.061

References

  • Ling C, Bacos K, Ronn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol. 2022;18(7):433-48.
  • DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.
  • Boskovic A, Rando OJ. Transgenerational epigenetic ınheritance. Annu Rev Genet. 2018;52:21-41.
  • Cao J, Wu Q, Huang Y, et al. The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics. 2021;13(1):93.
  • Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the relevance of DNA methylation changes in ımmune differentiation and disease. Genes (Basel). 2020;11(1).
  • Parveen N, Dhawan S. DNA methylation patterning and the regulation of beta cell homeostasis. Front Endocrinol (Lausanne). 2021;12:651258.
  • Huang S, Qin P, Chen Q, et al. Association of FTO gene methylation with incident type 2 diabetes mellitus: A nested case-control study. Gene. 2021;786:145585.
  • Gao X, Shin YH, Li M, et al. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One. 2010;5(11):e14005.
  • Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis. 2023;10(6):2351-65.
  • Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21(2):371-83.
  • Contreras AV, Torres N, Tovar AR. PPAR-alpha as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4(4):439-52.
  • Kokeny G, Calvier L, Hansmann G. PPAR gamma and TGF beta-major regulators of metabolism, ınflammation, and fibrosis in the lungs and kidneys. Int J Mol Sci. 2021;22(19).
  • Gancheva S, Ouni M, Jelenik T, et al. Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun. 2019;10(1):4179.
  • Keller M, Hopp L, Liu X, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab. 2017;6(1):86-100.
  • Ling C. Epigenetic regulation of insulin action and secretion - role in the pathogenesis of type 2 diabetes. J Intern Med. 2020;288(2):158-67.
  • Ronn T, Volkov P, Gillberg L, et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet. 2015;24(13):3792-813.
  • Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91.
  • Yang XH, Feng SY, Yu Y, et al. Study on the relationship between the methylation of the MMP-9 gene promoter region and diabetic nephropathy. Endokrynol Pol. 2018;69(3):269-75.
  • Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006.
  • Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427-31.
  • Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 2016;48(3):e220.
  • Willmer T, Johnson R, Louw J, et al. Blood-based DNA methylation biomarkers for type 2 diabetes: Potential for clinical applications. Front Endocrinol (Lausanne). 2018;9:744.
  • Dayeh T, Volkov P, Salo S, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.
  • Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3(7):526-34.
  • Almen MS, Jacobsson JA, Moschonis G, et al. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics. 2012;99(3):132-7.
  • He M, Cornelis MC, Franks PW, et al. Obesity genotype score and cardiovascular risk in women with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2010;30(2):327-32.
  • Lappalainen T, Kolehmainen M, Schwab US, et al. Association of the FTO gene variant (rs9939609) with cardiovascular disease in men with abnormal glucose metabolism--the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis. 2011;21(9):691-8.
  • Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol. 2015;93(5):511-21.
  • Van Otterdijk SD, Binder AM, Szarc Vel Szic K, et al. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS One. 2017;12(7):e0180955.
  • Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991-1000.
  • Bell CG, Finer S, Lindgren CM, et al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One. 2010;5(11):e14040.
  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669-81.
  • Florez JC, Jablonski KA, Sun MW, et al. Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J Clin Endocrinol Metab. 2007;92(4):1502-9.
  • Leonardini A, Laviola L, Perrini S, et al. Cross-talk between PPAR gamma and ınsulin signaling and modulation of ınsulin sensitivity. PPAR Res. 2009;2009:818945.

The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients

Year 2024, Volume: 11 Issue: 3, 173 - 179, 18.12.2024
https://doi.org/10.47572/muskutd.1523669

Abstract

Type 2 diabetes (T2DM) is a complex, metabolic disease driven by genetic susceptibilities, environmental interactions, and various genes. Nowadays, increasing number of studies show the relationship between diabetes mellitus (DM) and epigenetics, especially DNA methylation. In this study, we aimed to measure the methylation levels of fat mass and obesity associated (FTO) and peroxisome proliferator activated receptor gamma (PPARG) in the peripheral blood samples of patients with clinical diagnosis of T2DM. In our study, whole blood was taken from T2DM patients (n=43) who applied to the Endocrinology Outpatient Clinic and from age-gender-matched healthy individuals (n=42). After the bisulfide conversion of isolated genomic DNAs from whole blood samples, the methylation profiles of target genes were analyzed with methyl-specific PCR and gel electrophoresis methods. Post-statistical analyses, no significant difference was found between the T2DM and control groups regarding FTO methylation status. The methylation level of PPARG gene in T2DM was significantly higher compared to the control group. Given the insulin sensitizing effects of PPARG, our findings confirm the possibility that methylation-mediated suppression of PPARG gene expression may lead to elevation of insulin resistance in T2DM patients. Further gene expression studies with more patients and quantitative methods will be required to better understand the effects of methylation in the PPARG gene in T2DM patients and its relationship to the disease.

Ethical Statement

The present study was approved by Hatay Mustafa Kemal University Clinical Research Ethical Board (Date: 06/09/2021, issue No: 4298783/05045).

Supporting Institution

Scientific Research Projects Unit in Hatay Mustafa Kemal University

Project Number

22.GAP.061

References

  • Ling C, Bacos K, Ronn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol. 2022;18(7):433-48.
  • DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.
  • Boskovic A, Rando OJ. Transgenerational epigenetic ınheritance. Annu Rev Genet. 2018;52:21-41.
  • Cao J, Wu Q, Huang Y, et al. The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin Epigenetics. 2021;13(1):93.
  • Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the relevance of DNA methylation changes in ımmune differentiation and disease. Genes (Basel). 2020;11(1).
  • Parveen N, Dhawan S. DNA methylation patterning and the regulation of beta cell homeostasis. Front Endocrinol (Lausanne). 2021;12:651258.
  • Huang S, Qin P, Chen Q, et al. Association of FTO gene methylation with incident type 2 diabetes mellitus: A nested case-control study. Gene. 2021;786:145585.
  • Gao X, Shin YH, Li M, et al. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One. 2010;5(11):e14005.
  • Huang C, Chen W, Wang X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases. Genes Dis. 2023;10(6):2351-65.
  • Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21(2):371-83.
  • Contreras AV, Torres N, Tovar AR. PPAR-alpha as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4(4):439-52.
  • Kokeny G, Calvier L, Hansmann G. PPAR gamma and TGF beta-major regulators of metabolism, ınflammation, and fibrosis in the lungs and kidneys. Int J Mol Sci. 2021;22(19).
  • Gancheva S, Ouni M, Jelenik T, et al. Dynamic changes of muscle insulin sensitivity after metabolic surgery. Nat Commun. 2019;10(1):4179.
  • Keller M, Hopp L, Liu X, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab. 2017;6(1):86-100.
  • Ling C. Epigenetic regulation of insulin action and secretion - role in the pathogenesis of type 2 diabetes. J Intern Med. 2020;288(2):158-67.
  • Ronn T, Volkov P, Gillberg L, et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet. 2015;24(13):3792-813.
  • Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91.
  • Yang XH, Feng SY, Yu Y, et al. Study on the relationship between the methylation of the MMP-9 gene promoter region and diabetic nephropathy. Endokrynol Pol. 2018;69(3):269-75.
  • Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996-1006.
  • Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427-31.
  • Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 2016;48(3):e220.
  • Willmer T, Johnson R, Louw J, et al. Blood-based DNA methylation biomarkers for type 2 diabetes: Potential for clinical applications. Front Endocrinol (Lausanne). 2018;9:744.
  • Dayeh T, Volkov P, Salo S, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.
  • Chambers JC, Loh M, Lehne B, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol. 2015;3(7):526-34.
  • Almen MS, Jacobsson JA, Moschonis G, et al. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics. 2012;99(3):132-7.
  • He M, Cornelis MC, Franks PW, et al. Obesity genotype score and cardiovascular risk in women with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2010;30(2):327-32.
  • Lappalainen T, Kolehmainen M, Schwab US, et al. Association of the FTO gene variant (rs9939609) with cardiovascular disease in men with abnormal glucose metabolism--the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis. 2011;21(9):691-8.
  • Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol. 2015;93(5):511-21.
  • Van Otterdijk SD, Binder AM, Szarc Vel Szic K, et al. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS One. 2017;12(7):e0180955.
  • Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991-1000.
  • Bell CG, Finer S, Lindgren CM, et al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One. 2010;5(11):e14040.
  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669-81.
  • Florez JC, Jablonski KA, Sun MW, et al. Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J Clin Endocrinol Metab. 2007;92(4):1502-9.
  • Leonardini A, Laviola L, Perrini S, et al. Cross-talk between PPAR gamma and ınsulin signaling and modulation of ınsulin sensitivity. PPAR Res. 2009;2009:818945.
There are 34 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases, Clinical Sciences (Other)
Journal Section Original Article
Authors

Menderes Yusuf Terzi 0000-0001-8478-0451

Meral Urhan Küçük 0000-0003-1704-1370

Müge Özsan Yılmaz 0000-0001-8346-8941

Zehra İlçe Kaya 0009-0004-7070-4297

Project Number 22.GAP.061
Publication Date December 18, 2024
Submission Date July 30, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Terzi, M. Y., Urhan Küçük, M., Özsan Yılmaz, M., İlçe Kaya, Z. (2024). The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 11(3), 173-179. https://doi.org/10.47572/muskutd.1523669
AMA Terzi MY, Urhan Küçük M, Özsan Yılmaz M, İlçe Kaya Z. The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients. MMJ. December 2024;11(3):173-179. doi:10.47572/muskutd.1523669
Chicago Terzi, Menderes Yusuf, Meral Urhan Küçük, Müge Özsan Yılmaz, and Zehra İlçe Kaya. “The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 11, no. 3 (December 2024): 173-79. https://doi.org/10.47572/muskutd.1523669.
EndNote Terzi MY, Urhan Küçük M, Özsan Yılmaz M, İlçe Kaya Z (December 1, 2024) The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 11 3 173–179.
IEEE M. Y. Terzi, M. Urhan Küçük, M. Özsan Yılmaz, and Z. İlçe Kaya, “The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients”, MMJ, vol. 11, no. 3, pp. 173–179, 2024, doi: 10.47572/muskutd.1523669.
ISNAD Terzi, Menderes Yusuf et al. “The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 11/3 (December 2024), 173-179. https://doi.org/10.47572/muskutd.1523669.
JAMA Terzi MY, Urhan Küçük M, Özsan Yılmaz M, İlçe Kaya Z. The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients. MMJ. 2024;11:173–179.
MLA Terzi, Menderes Yusuf et al. “The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, vol. 11, no. 3, 2024, pp. 173-9, doi:10.47572/muskutd.1523669.
Vancouver Terzi MY, Urhan Küçük M, Özsan Yılmaz M, İlçe Kaya Z. The Identification of Methylation Profiles of FTO and PPARG Genes in Type 2 Diabetes Mellitus Patients. MMJ. 2024;11(3):173-9.