Research Article
BibTex RIS Cite

Fotorefraktif Keratektomide Birinci Yıl Sonuçlarımız ve Başarıyı Etkileyen Faktörler

Year 2025, Volume: 12 Issue: 2, 149 - 154, 28.08.2025
https://doi.org/10.47572/muskutd.1634657

Abstract

Fotorefraktif keratektominin (FRK) bir yıllık sonuçlarını değerlendirmek ve etkinliğini etkileyen faktörleri araştırmak için retrospektif bir çalışma yürüttük. Ocak 2021 ile Ocak 2023 tarihleri arasında miyopik, hipermetropik ve/veya astigmatik kırma kusurları nedeniyle FRK uygulanan 18-40 yaş arası 98 hastanın 196 gözünün tıbbi kayıtları ve ameliyat sonrası birinci yıldaki sonuçları çalışmaya dahil edildi. Ameliyat sonrası birinci yıldaki sferik eşdeğer (SE) ölçümünün ± 0.50 D içinde olması başarılı olarak kabul edilmiştir. Yaş, cinsiyet, ameliyat öncesi kornea kalınlığı, görme keskinliği, kırma kusurunun tipi ve büyüklüğü, astigmatizma tipi ve ortalama keratometri gibi başarıyı etkileyebilecek potansiyel faktörlerin başarıya etkisi araştırıldı. Tüm FRK ameliyatları aynı cerrah tarafından, WaveLight® EX 500 cihazı kullanılarak alkol destekli epitel soyma yöntemiyle gerçekleştirilmiştir. Ameliyat sonrası birinci yıl vizitinde, hastaların %80.1'inde ± 0.50 D içinde SE elde edildi. İntraoperatif veya postoperatif komplikasyon gözlenmedi. Ameliyat öncesi kornea kalınlığının FRK’nın birinci yıl sonuçlarını etkileyebilecek tek faktör olduğu saptandı. Çoklu model sonuçlarının analizi, ameliyat öncesi pakimetri değerindeki bir birimlik düşüşün başarı olasılığını 1.021 (1/0.979) kat artırdığını göstermiştir (p=0.001). Diğer bağımsız değişkenlerin başarı olasılığı üzerinde istatistiksel olarak anlamlı bir etkisi saptanmamıştır. (p>0.05).

References

  • Kim TI, Alió Del Barrio JL, Wilkins M, et al. Refractive surgery. Lancet 2019;393(10185):2085-98.
  • Sahay P, Bafna RK, Reddy JC, et al. Complications of laser-assisted in situ keratomileusis. Indian J Ophthalmol. 2021;69(7):1658-69.
  • Janiszewska-Bil D, Czarnota-Nowakowska B, Grabarek BO, et al. Comparison of Vision Correction and Corneal Thickness at 180-Day Follow-Up After Femtosecond Laser-Assisted In-Situ Keratomileusis (FS-LASIK), Photorefractive Keratectomy (PRK), and Small Incision Lenticule Extraction (SMILE): A Study from a Single Center in Poland of 120 Patients with Myopia. Med Sci Monit. 2023 Feb 16;29:e939099.
  • Randleman JB, Woodward M, Lynn MJ, et al. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115(1):37-50.
  • Sorkin N, Rosenblatt A, Smadja D, et al. Early refractive and clinical outcomes of high-myopic photorefractive keratectomy as an alternative to LASIK surgery in eyes with high preoperative percentage of tissue altered. J Ophthalmol 2019;6513143.
  • Ambrósio R Jr, Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol. 2003;18(1):2-10.
  • Naderi M, Ghadamgahi S, Jadidi K. Photorefractive Keratectomy (PRK) is safe and effective for patients with myopia and thin corneas. Med Hypothesis Discov Innov Ophthalmol 2016;5:58–62.
  • Chang JY, Lin PY, Hsu CC, et al. Comparison of clinical outcomes of LASIK, Trans-PRK, and SMILE for correction of myopia. J Chin Med Assoc. 2022;85(2):145-51.
  • Moshirfar M, Santos JM, Wang Q, et al. A Literature Review of the Incidence, Management, and Prognosis of Corneal Epithelial-Related Complications After Laser-Assisted In Situ Keratomileusis (LASIK), Photorefractive Keratectomy (PRK), and Small Incision Lenticule Extraction (SMILE). Cureus. 2023;15(8):e43926.
  • Hira S, Klein Heffel K, Mehmood F, et al. Comparison of refractive surgeries (SMILE, LASIK, and PRK) with and without corneal crosslinking: systematic review and meta-analysis. J Cataract Refract Surg. 2024;50(5):523-33.
  • Moshirfar M, Herron MS, Cha DS, et al. Correlational Analysis of the Effective Optical Zone with Myopia, Myopic Astigmatism, and Spherical Equivalent in LASIK, PRK, and SMILE. Clin Ophthalmol. 2024;18:377-92.
  • Hersh PS, Schein OD, Steinert R. Characteristics influencing outcomes of excimer laser photorefractive keratectomy. Summit Photorefractive Keratectomy Phase III Study Group. Ophthalmology. 1996;103(11):1962-9.
  • Rao SN, Chuck RS, Chang AH, et al. Effect of age on the refractive outcome of myopic photorefractive keratectomy. J Cataract Refract Surg. 2000;26:543–6.
  • Pokroy R, Mimouni M, Sela T, et al. Predictors of myopic photorefractive keratectomy retreatment. J Cataract Refract Surg. 2017;43(6):825-32.
  • Gomel N, Negari S, Frucht-Pery J, Wajnsztajn D, Strassman E, Solomon A. Predictive factors for efficacy and safety in refractive surgery for myopia. PLoS One. 2018;13(12):e0208608.
  • Levinger E, Arnon R, Pikkel J, et al. Photorefractive keratectomy in flat, normal, and steep corneas. J Cataract Refract Surg. 2024;50(1):51-6.
  • Tananuvat N, Winaikosol P, Niparugs M, et al. Twelve-Month Outcomes of the Wavefront-Optimized Photorefractive Keratectomy for High Myopic Correction Compared with Low-to-Moderate Myopia. Clin Ophthalmol. 2021;15:4775-85.
  • Mohammadi SF, Nabovati P, Mirzajani A, et al. Risk factors of regression and undercorrection in photorefractive keratectomy: a case-control study. Int J Ophthalmol. 2015;8(5):933-97.
  • Katz T, Wagenfeld L, Galambos P, et al. LASIK versus photorefractive keratectomy for high myopic (>3 diopter) astigmatism. J Refract Surg. 2013;29(12):824-31.
  • Stojanovic A, Nitter TA. 200 Hz flying-spot technology of the LaserSight LSX excimer laser in the treatment of myopic astigmatism: six and 12 month outcomes of laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg. 2001;27(8):1263-77.
  • Sedghipour MR, Sorkhabi R, Mostafaei A. Wavefront-guided versus cross-cylinder photorefractive keratectomy in moderate-to-high astigmatism: a cohort of two consecutive clinical trials. Clin Ophthalmol. 2012;6:199-204.
  • Jabbur NS, Kraff C; Visx Wavefront Study Group. Wavefront-guided laser in situ keratomileusis using the WaveScan system for correction of low to moderate myopia with astigmatism: 6-month results in 277 eyes. J Cataract Refract Surg. 2005;31(8):1493-501.
  • Baz O, Kara N, Bozkurt E, et al. Photorefractive keratectomy in the correction of astigmatism using Schwind Amaris 750s laser. Int J Ophthalmol. 2013;6(3):356-61
  • Abdel-Radi M, Rateb M, Saleh MGA, et al. Twelve-month outcomes of single-step transepithelial photorefractive keratectomy for moderate hyperopia and hyperopic astigmatism. Eye Vis (Lond). 2023;10(1):7.
  • Roszkowska AM, Biondi S, Chisari G, et al. Visual outcome after excimer laser refractive surgery in adult patients with amblyopia. Eur J Ophthalmol. 2006;16(2):214-8.
  • Alió JL, Wolter NV, Piñero DP, et al. Pediatric refractive surgery and its role in the treatment of amblyopia: meta-analysis of the peer-reviewed literature. J Refract Surg. 2011;27(5):364-74.
  • Naderi M, Sabour S, Khodakarim S, et al. Studying the factors related to refractive error regression after PRK surgery. BMC Ophthalmol. 2018;18(1):198.

One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy

Year 2025, Volume: 12 Issue: 2, 149 - 154, 28.08.2025
https://doi.org/10.47572/muskutd.1634657

Abstract

We conducted a retrospective study to evaluate the one-year outcomes of photorefractive keratectomy (PRK) and investigate the factors affecting its efficacy, The medical records of 196 eyes of 98 patients aged 18-40 years who underwent PRK between January 2021 and January 2023 for myopic, hypermetropic, and/or astigmatic refractive errors, and follow-up examinations in the first postoperative year were included. Outcome measures included intraoperative and postoperative complications and objective refraction spherical equivalent (SE) at the postoperative 1st year visit. A one-year postoperative measurement of SE within ± 0.50 D was considered successful. Potential factors that may influence success, including age, sex, preoperative corneal thickness, visual acuity, refractive error type and magnitude, astigmatism type, and mean keratometry (Kmean) were investigated. All PRK surgeries were performed by the same surgeon, utilizing alcohol-assisted epithelial removal using a WaveLight® EX 500 device. At the first year visit, 80.1% of patients achieved SE within ± 0.50 D. No intraoperative or postoperative complications were observed. Preoperative corneal thickness was identified as the sole factor affecting PRK outcomes. Analysis of the multiple model results indicated that a one-unit decrease in the preoperative pachymetry value increased the probability of success by a factor of 1.021 (1/0.979) (p=0.001). The other independent variables did not exhibit a statistically significant effect on the probability of success (p>0.05).

References

  • Kim TI, Alió Del Barrio JL, Wilkins M, et al. Refractive surgery. Lancet 2019;393(10185):2085-98.
  • Sahay P, Bafna RK, Reddy JC, et al. Complications of laser-assisted in situ keratomileusis. Indian J Ophthalmol. 2021;69(7):1658-69.
  • Janiszewska-Bil D, Czarnota-Nowakowska B, Grabarek BO, et al. Comparison of Vision Correction and Corneal Thickness at 180-Day Follow-Up After Femtosecond Laser-Assisted In-Situ Keratomileusis (FS-LASIK), Photorefractive Keratectomy (PRK), and Small Incision Lenticule Extraction (SMILE): A Study from a Single Center in Poland of 120 Patients with Myopia. Med Sci Monit. 2023 Feb 16;29:e939099.
  • Randleman JB, Woodward M, Lynn MJ, et al. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115(1):37-50.
  • Sorkin N, Rosenblatt A, Smadja D, et al. Early refractive and clinical outcomes of high-myopic photorefractive keratectomy as an alternative to LASIK surgery in eyes with high preoperative percentage of tissue altered. J Ophthalmol 2019;6513143.
  • Ambrósio R Jr, Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol. 2003;18(1):2-10.
  • Naderi M, Ghadamgahi S, Jadidi K. Photorefractive Keratectomy (PRK) is safe and effective for patients with myopia and thin corneas. Med Hypothesis Discov Innov Ophthalmol 2016;5:58–62.
  • Chang JY, Lin PY, Hsu CC, et al. Comparison of clinical outcomes of LASIK, Trans-PRK, and SMILE for correction of myopia. J Chin Med Assoc. 2022;85(2):145-51.
  • Moshirfar M, Santos JM, Wang Q, et al. A Literature Review of the Incidence, Management, and Prognosis of Corneal Epithelial-Related Complications After Laser-Assisted In Situ Keratomileusis (LASIK), Photorefractive Keratectomy (PRK), and Small Incision Lenticule Extraction (SMILE). Cureus. 2023;15(8):e43926.
  • Hira S, Klein Heffel K, Mehmood F, et al. Comparison of refractive surgeries (SMILE, LASIK, and PRK) with and without corneal crosslinking: systematic review and meta-analysis. J Cataract Refract Surg. 2024;50(5):523-33.
  • Moshirfar M, Herron MS, Cha DS, et al. Correlational Analysis of the Effective Optical Zone with Myopia, Myopic Astigmatism, and Spherical Equivalent in LASIK, PRK, and SMILE. Clin Ophthalmol. 2024;18:377-92.
  • Hersh PS, Schein OD, Steinert R. Characteristics influencing outcomes of excimer laser photorefractive keratectomy. Summit Photorefractive Keratectomy Phase III Study Group. Ophthalmology. 1996;103(11):1962-9.
  • Rao SN, Chuck RS, Chang AH, et al. Effect of age on the refractive outcome of myopic photorefractive keratectomy. J Cataract Refract Surg. 2000;26:543–6.
  • Pokroy R, Mimouni M, Sela T, et al. Predictors of myopic photorefractive keratectomy retreatment. J Cataract Refract Surg. 2017;43(6):825-32.
  • Gomel N, Negari S, Frucht-Pery J, Wajnsztajn D, Strassman E, Solomon A. Predictive factors for efficacy and safety in refractive surgery for myopia. PLoS One. 2018;13(12):e0208608.
  • Levinger E, Arnon R, Pikkel J, et al. Photorefractive keratectomy in flat, normal, and steep corneas. J Cataract Refract Surg. 2024;50(1):51-6.
  • Tananuvat N, Winaikosol P, Niparugs M, et al. Twelve-Month Outcomes of the Wavefront-Optimized Photorefractive Keratectomy for High Myopic Correction Compared with Low-to-Moderate Myopia. Clin Ophthalmol. 2021;15:4775-85.
  • Mohammadi SF, Nabovati P, Mirzajani A, et al. Risk factors of regression and undercorrection in photorefractive keratectomy: a case-control study. Int J Ophthalmol. 2015;8(5):933-97.
  • Katz T, Wagenfeld L, Galambos P, et al. LASIK versus photorefractive keratectomy for high myopic (>3 diopter) astigmatism. J Refract Surg. 2013;29(12):824-31.
  • Stojanovic A, Nitter TA. 200 Hz flying-spot technology of the LaserSight LSX excimer laser in the treatment of myopic astigmatism: six and 12 month outcomes of laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg. 2001;27(8):1263-77.
  • Sedghipour MR, Sorkhabi R, Mostafaei A. Wavefront-guided versus cross-cylinder photorefractive keratectomy in moderate-to-high astigmatism: a cohort of two consecutive clinical trials. Clin Ophthalmol. 2012;6:199-204.
  • Jabbur NS, Kraff C; Visx Wavefront Study Group. Wavefront-guided laser in situ keratomileusis using the WaveScan system for correction of low to moderate myopia with astigmatism: 6-month results in 277 eyes. J Cataract Refract Surg. 2005;31(8):1493-501.
  • Baz O, Kara N, Bozkurt E, et al. Photorefractive keratectomy in the correction of astigmatism using Schwind Amaris 750s laser. Int J Ophthalmol. 2013;6(3):356-61
  • Abdel-Radi M, Rateb M, Saleh MGA, et al. Twelve-month outcomes of single-step transepithelial photorefractive keratectomy for moderate hyperopia and hyperopic astigmatism. Eye Vis (Lond). 2023;10(1):7.
  • Roszkowska AM, Biondi S, Chisari G, et al. Visual outcome after excimer laser refractive surgery in adult patients with amblyopia. Eur J Ophthalmol. 2006;16(2):214-8.
  • Alió JL, Wolter NV, Piñero DP, et al. Pediatric refractive surgery and its role in the treatment of amblyopia: meta-analysis of the peer-reviewed literature. J Refract Surg. 2011;27(5):364-74.
  • Naderi M, Sabour S, Khodakarim S, et al. Studying the factors related to refractive error regression after PRK surgery. BMC Ophthalmol. 2018;18(1):198.
There are 27 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Original Article
Authors

Konuralp Yakar 0000-0002-3839-5699

Göksu Alaçamlı 0000-0001-5013-9981

Publication Date August 28, 2025
Submission Date February 6, 2025
Acceptance Date April 3, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Yakar, K., & Alaçamlı, G. (2025). One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 12(2), 149-154. https://doi.org/10.47572/muskutd.1634657
AMA Yakar K, Alaçamlı G. One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy. MMJ. August 2025;12(2):149-154. doi:10.47572/muskutd.1634657
Chicago Yakar, Konuralp, and Göksu Alaçamlı. “One-Year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 12, no. 2 (August 2025): 149-54. https://doi.org/10.47572/muskutd.1634657.
EndNote Yakar K, Alaçamlı G (August 1, 2025) One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 12 2 149–154.
IEEE K. Yakar and G. Alaçamlı, “One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy”, MMJ, vol. 12, no. 2, pp. 149–154, 2025, doi: 10.47572/muskutd.1634657.
ISNAD Yakar, Konuralp - Alaçamlı, Göksu. “One-Year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi 12/2 (August2025), 149-154. https://doi.org/10.47572/muskutd.1634657.
JAMA Yakar K, Alaçamlı G. One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy. MMJ. 2025;12:149–154.
MLA Yakar, Konuralp and Göksu Alaçamlı. “One-Year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy”. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, vol. 12, no. 2, 2025, pp. 149-54, doi:10.47572/muskutd.1634657.
Vancouver Yakar K, Alaçamlı G. One-year Outcomes of Photorefractive Keratectomy and Factors Influencing Its Efficacy. MMJ. 2025;12(2):149-54.