Year 2024,
Volume: 4 Issue: 1, 6 - 10, 30.06.2024
Ferda Mindivan
,
Meryem Göktaş
,
Sümeyye Makta
Project Number
2021-02. BSEÜ.01-03 And TUBITAK-120M872
References
- 1. Chen J, Lu L, Wu D, et al. Green Poly(ε-caprolactone) Composites Reinforced with Electrospun Polylactide/Poly(ε-caprolactone) Blend Fiber Mats. ACS Sustain Chem Eng. 2014;2(9):2102-2110. doi:10.1021/sc500344n
- 2. Thakur M, Majid I, Hussain S, Nanda V. Poly(ε‐caprolactone): A potential polymer for biodegradable food
packaging applications. Packag Technol Sci. 2021;34(8):449-461. doi:10.1002/pts.2572
- 3. Guarino V, Gentile G, Sorrentino L, Ambrosio L. Polycaprolactone: Synthesis, Properties, and Applications.
Encyclopedia of Polymer Science and Technology. Published online August 15, 2017:1-36.
doi:10.1002/0471440264.pst658
- 4. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217-1256. doi:10.1016/j.progpolymsci.2010.04.002
- 5. Baji A, Wong S, Liu T, Li T, Srivatsan TS. Morphological and X‐ray diffraction studies of crystalline hydroxyapatite‐reinforced polycaprolactone. J Biomed Mater Res B Appl Biomater. 2006;81B(2):343-350. doi:10.1002/jbm.b.30671
- 6. Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C. Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 2008;4(3):756-765. doi:10.1016/j.actbio.2007.12.005
- 7. Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E. Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites: The Influence of the Graft Length on the Mechanical Properties. ACS Appl Mater Interfaces. 2011;3(5):1426-1433. doi:10.1021/am2001828
- 8. Villmow T, Kretzschmar B, Pötschke P. Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol. 2010;70(14):2045-2055. doi:10.1016/j.compscitech.2010.07.021
- 9. Kakroodi AR, Kazemi Y, Rodrigue D, Park CB. Facile production of biodegradable PCL/PLA in situ nanofibrillar
composites with unprecedented compatibility between the blend components. Chem Eng J. 2018;351:976-984. doi:10.1016/j.cej.2018.06.152
- 10. Mohamed RM, Yusoh K. A Review on the Recent Research of Polycaprolactone (PCL). Adv Mater Res. 2015;1134:249-255. doi:10.4028/www.scientific.net/amr.1134.249
- 11. Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem. 2020;52(4):814-847. doi:10.1080/10408347.2020.1828029
- 12. Wongso V, Sambudi NS, Sufian S, Isnaeni N. The effect of hydrothermal conditions on photoluminescence
properties of rice husk-derived silica-carbon quantum dots for methylene blue degradation. Biomass Convers Biorefin.2020;11(6):2641-2654. doi:10.1007/s13399-020-00662-9
- 13. Irmania N, Dehvari K, Gedda G, Tseng P, Chang J. Manganese‐doped green tea‐derived carbon quantum
dots as a targeted dual imaging and photodynamic therapy platform. J Biomed Mater Res B Appl Biomater.
2019;108(4):1616-1625. doi:10.1002/jbm.b.34508
- 14. Yang H, Zhou B, Zhang Y, et al. Valorization of Expired Passion Fruit Shell by Hydrothermal Conversion into
Carbon Quantum Dot: Physical and Optical Properties. Waste Biomass Valor. 2020;12(4):2109-2117.
doi:10.1007/s12649-020-01132-z
- 15. Arumugham T, Alagumuthu M, Amimodu RG, Munusamy S, Iyer SK. A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustain Mater Technol. 2020;23:e00138. doi:10.1016/j.susmat.2019.e00138
- 16. Tadesse A, Hagos M, RamaDevi D, Basavaiah K, Belachew N. Fluorescent-Nitrogen-Doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury(II) Ion Sensing, and Live Cell Imaging. ACS Omega. 2020;5(8):3889-3898. doi:10.1021/acsomega.9b03175
- 17. Chaudhary N, Gupta PK, Eremin S, Solanki PR. One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J Environ Chem Eng. 2020;8(3):103720. doi:10.1016/j.jece.2020.103720
- 18. Surendran P, Lakshmanan A, Vinitha G, Ramalingam G, Rameshkumar P. Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence.2019;35(2):196-202. doi:10.1002/bio.3713
- 19. Dias C, Vasimalai N, Sárria MP, et al. Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials. 2019;9(2):199. doi:10.3390/nano9020199
- 20. Rajendran K, Rajendran G, Kasthuri J, Kathiravan K, Rajendiran N. Sweet Corn (Zea mays L. var. rugosa) Derived Fluorescent Carbon Quantum Dots for Selective Detection of Hydrogen Sulfide and Bioimaging Applications. ChemistrySelect. 2019;4(46):13668-13676. doi:10.1002/slct.201903385
- 21. Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M. Green Synthesis of Carbon Dots Derived from Walnut Oil and an Investigation of Their Cytotoxic and Apoptogenic Activities toward Cancer Cells. Adv Pharm Bull. 2018;8(1):149-155. doi:10.15171/apb.2018.018
- 22. Vasimalai N, Vilas-Boas V, Gallo J, et al. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J Nanotechnol. 2018;9:530-544. doi:10.3762/bjnano.9.51
- 23. Mindivan F, Göktaş M. The green synthesis of carbon quantum dots (CQDs) and characterization of
polycaprolactone (PCL/CQDs) films. Colloids Surf A Physicochem Eng Asp. 2023;677:132446. doi:10.1016/j.colsurfa.2023.132446
- 24. Catauro M, Bollino F, Giovanardi R, Veronesi P. Modification of Ti6Al4V implant surfaces by biocompatible
TiO 2 /PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior. Mater Sci Eng C Biomim Mater Sens Syst. 2017;74:501-507. doi:10.1016/j.msec.2016.12.046
- 25. Tong P, Sheng Y, Hou R, Iqbal M, Chen L, Li J. Recent progress on coatings of biomedical magnesium alloy.
Smart Mater Med. 2022;3:104-116. doi:10.1016/j.smaim.2021.12.007
- 26. Makta S. Green Synthesis of Carbon Quantum Dots from Rosa Canina L. (K-CQDS), Preparation of K-CQDS Filled Polycaprolacton Films (PCL/K-CQDS), Investigation of Their Mechanical and Biodegradability Properties. [MSc Thesis]. Bilecik, Turkey; 2023.
- 27. Hendrikson WJ, Zeng X, Rouwkema J, Van Blitterswijk CA, Van Der Heide E, Moroni L. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration. Adv Healthc
Mater. 2015;5(2):232-243. doi:10.1002/adhm.201500067
- 28. Chen B, Wang J, Yan F. Friction and Wear Behaviors of Several Polymers Sliding Against GCr15 and 316 Steel Under the Lubrication of Sea Water. Tribol Lett. 2011;42(1):17-25. doi:10.1007/s11249-010-9743-9
- 29. Dangsheng X. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater Lett. 2005;59(2-3):175-179. doi:10.1016/j.matlet.2004.09.011
- 30. Meng H, Sui GX, Xie GY, Yang R. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Compos Sci Technol. 2009;69(5):606-611.
doi:10.1016/j.compscitech.2008.12.004
- 31. Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A. Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites. Polym Compos.
2017;39(11):3877-3888. doi:10.1002/pc.24422
- 32. Min Y, Kim CL, Kim DE. Tribological properties of the hierarchically structured graphene oxide composite
coatings reinforced with polyvinyl alcohol. Wear. 2022;490-491:204212. doi:10.1016/j.wear.2021.204212
- 33. Jeon H, Kim Y, Yu WR, Lee JU. Exfoliated graphene/thermoplastic elastomer nanocomposites with
improved wear properties for 3D printing. Compos Part B Eng. 2020;189:107912. doi:10.1016/j.compositesb.2020.107912
Biotribological behavior of polycaprolacton (PCL)/carbon quantum dots (CQDS) films
Year 2024,
Volume: 4 Issue: 1, 6 - 10, 30.06.2024
Ferda Mindivan
,
Meryem Göktaş
,
Sümeyye Makta
Abstract
Several new-generation synthetic biodegradable polymers have been developed specifically for biomedical applications in the last two decades. Polycaprolacton (PCL) was chosen as the polymer matrix in this study because it is known for its ease of synthesis, commercial availability, and excellent biocompatibility. Carbon Quantum Dots (CQDs), one of the carbon nanostructures with superior properties, were used as fillers to produce PCL film nanocomposites with improved biotribological properties. The biotribological behavior of (Sample of K-CQDs produced from Rosehip) K-CQDs filled PCL matrix nanocomposite films containing 0.3 and 2.0 wt. % K-CQDs filler were investigated in sliding against an alumina (Al2O3) counterface by a constant loading (2.5 N) and sliding speed (1.7 cm s-1) experiments carried out in a reciprocating friction testing machine in 0.154 M isotonic salt solution. PCL/K-CQDs-2.0 film had lower friction coefficent value (0.304) with a 70% decrease, and wear rate (0.00051 mm3/Nm; 65% decrease) compared to PCL/K-CQDs-0.3. The surface images of PCL/K-CQDs-2.0 film after the wear test indicated that the wear width trace and the adhesive wear traces decreased. In addition, the absence of cracks on the worn surface showed that both films were resistant to plastic deformation.
Ethical Statement
The authors declare that they have no conflict of interest.
Supporting Institution
Bilecik Seyh Edebali University And TUBITAK
Project Number
2021-02. BSEÜ.01-03 And TUBITAK-120M872
Thanks
The authors thank the financial support of the research foundation (Project no: 2021-02. BSEÜ.01-03) of Bilecik Seyh Edebali University
and TUBITAK-120M872 (The Scientific and Technological Research Council of Turkey).
References
- 1. Chen J, Lu L, Wu D, et al. Green Poly(ε-caprolactone) Composites Reinforced with Electrospun Polylactide/Poly(ε-caprolactone) Blend Fiber Mats. ACS Sustain Chem Eng. 2014;2(9):2102-2110. doi:10.1021/sc500344n
- 2. Thakur M, Majid I, Hussain S, Nanda V. Poly(ε‐caprolactone): A potential polymer for biodegradable food
packaging applications. Packag Technol Sci. 2021;34(8):449-461. doi:10.1002/pts.2572
- 3. Guarino V, Gentile G, Sorrentino L, Ambrosio L. Polycaprolactone: Synthesis, Properties, and Applications.
Encyclopedia of Polymer Science and Technology. Published online August 15, 2017:1-36.
doi:10.1002/0471440264.pst658
- 4. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217-1256. doi:10.1016/j.progpolymsci.2010.04.002
- 5. Baji A, Wong S, Liu T, Li T, Srivatsan TS. Morphological and X‐ray diffraction studies of crystalline hydroxyapatite‐reinforced polycaprolactone. J Biomed Mater Res B Appl Biomater. 2006;81B(2):343-350. doi:10.1002/jbm.b.30671
- 6. Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C. Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 2008;4(3):756-765. doi:10.1016/j.actbio.2007.12.005
- 7. Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E. Synthesis of Polycaprolactone-Grafted Microfibrillated Cellulose for Use in Novel Bionanocomposites: The Influence of the Graft Length on the Mechanical Properties. ACS Appl Mater Interfaces. 2011;3(5):1426-1433. doi:10.1021/am2001828
- 8. Villmow T, Kretzschmar B, Pötschke P. Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol. 2010;70(14):2045-2055. doi:10.1016/j.compscitech.2010.07.021
- 9. Kakroodi AR, Kazemi Y, Rodrigue D, Park CB. Facile production of biodegradable PCL/PLA in situ nanofibrillar
composites with unprecedented compatibility between the blend components. Chem Eng J. 2018;351:976-984. doi:10.1016/j.cej.2018.06.152
- 10. Mohamed RM, Yusoh K. A Review on the Recent Research of Polycaprolactone (PCL). Adv Mater Res. 2015;1134:249-255. doi:10.4028/www.scientific.net/amr.1134.249
- 11. Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem. 2020;52(4):814-847. doi:10.1080/10408347.2020.1828029
- 12. Wongso V, Sambudi NS, Sufian S, Isnaeni N. The effect of hydrothermal conditions on photoluminescence
properties of rice husk-derived silica-carbon quantum dots for methylene blue degradation. Biomass Convers Biorefin.2020;11(6):2641-2654. doi:10.1007/s13399-020-00662-9
- 13. Irmania N, Dehvari K, Gedda G, Tseng P, Chang J. Manganese‐doped green tea‐derived carbon quantum
dots as a targeted dual imaging and photodynamic therapy platform. J Biomed Mater Res B Appl Biomater.
2019;108(4):1616-1625. doi:10.1002/jbm.b.34508
- 14. Yang H, Zhou B, Zhang Y, et al. Valorization of Expired Passion Fruit Shell by Hydrothermal Conversion into
Carbon Quantum Dot: Physical and Optical Properties. Waste Biomass Valor. 2020;12(4):2109-2117.
doi:10.1007/s12649-020-01132-z
- 15. Arumugham T, Alagumuthu M, Amimodu RG, Munusamy S, Iyer SK. A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications. Sustain Mater Technol. 2020;23:e00138. doi:10.1016/j.susmat.2019.e00138
- 16. Tadesse A, Hagos M, RamaDevi D, Basavaiah K, Belachew N. Fluorescent-Nitrogen-Doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury(II) Ion Sensing, and Live Cell Imaging. ACS Omega. 2020;5(8):3889-3898. doi:10.1021/acsomega.9b03175
- 17. Chaudhary N, Gupta PK, Eremin S, Solanki PR. One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J Environ Chem Eng. 2020;8(3):103720. doi:10.1016/j.jece.2020.103720
- 18. Surendran P, Lakshmanan A, Vinitha G, Ramalingam G, Rameshkumar P. Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence.2019;35(2):196-202. doi:10.1002/bio.3713
- 19. Dias C, Vasimalai N, Sárria MP, et al. Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials. 2019;9(2):199. doi:10.3390/nano9020199
- 20. Rajendran K, Rajendran G, Kasthuri J, Kathiravan K, Rajendiran N. Sweet Corn (Zea mays L. var. rugosa) Derived Fluorescent Carbon Quantum Dots for Selective Detection of Hydrogen Sulfide and Bioimaging Applications. ChemistrySelect. 2019;4(46):13668-13676. doi:10.1002/slct.201903385
- 21. Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M. Green Synthesis of Carbon Dots Derived from Walnut Oil and an Investigation of Their Cytotoxic and Apoptogenic Activities toward Cancer Cells. Adv Pharm Bull. 2018;8(1):149-155. doi:10.15171/apb.2018.018
- 22. Vasimalai N, Vilas-Boas V, Gallo J, et al. Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J Nanotechnol. 2018;9:530-544. doi:10.3762/bjnano.9.51
- 23. Mindivan F, Göktaş M. The green synthesis of carbon quantum dots (CQDs) and characterization of
polycaprolactone (PCL/CQDs) films. Colloids Surf A Physicochem Eng Asp. 2023;677:132446. doi:10.1016/j.colsurfa.2023.132446
- 24. Catauro M, Bollino F, Giovanardi R, Veronesi P. Modification of Ti6Al4V implant surfaces by biocompatible
TiO 2 /PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior. Mater Sci Eng C Biomim Mater Sens Syst. 2017;74:501-507. doi:10.1016/j.msec.2016.12.046
- 25. Tong P, Sheng Y, Hou R, Iqbal M, Chen L, Li J. Recent progress on coatings of biomedical magnesium alloy.
Smart Mater Med. 2022;3:104-116. doi:10.1016/j.smaim.2021.12.007
- 26. Makta S. Green Synthesis of Carbon Quantum Dots from Rosa Canina L. (K-CQDS), Preparation of K-CQDS Filled Polycaprolacton Films (PCL/K-CQDS), Investigation of Their Mechanical and Biodegradability Properties. [MSc Thesis]. Bilecik, Turkey; 2023.
- 27. Hendrikson WJ, Zeng X, Rouwkema J, Van Blitterswijk CA, Van Der Heide E, Moroni L. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration. Adv Healthc
Mater. 2015;5(2):232-243. doi:10.1002/adhm.201500067
- 28. Chen B, Wang J, Yan F. Friction and Wear Behaviors of Several Polymers Sliding Against GCr15 and 316 Steel Under the Lubrication of Sea Water. Tribol Lett. 2011;42(1):17-25. doi:10.1007/s11249-010-9743-9
- 29. Dangsheng X. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater Lett. 2005;59(2-3):175-179. doi:10.1016/j.matlet.2004.09.011
- 30. Meng H, Sui GX, Xie GY, Yang R. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 composites under dry sliding and water lubricated condition. Compos Sci Technol. 2009;69(5):606-611.
doi:10.1016/j.compscitech.2008.12.004
- 31. Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A. Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites. Polym Compos.
2017;39(11):3877-3888. doi:10.1002/pc.24422
- 32. Min Y, Kim CL, Kim DE. Tribological properties of the hierarchically structured graphene oxide composite
coatings reinforced with polyvinyl alcohol. Wear. 2022;490-491:204212. doi:10.1016/j.wear.2021.204212
- 33. Jeon H, Kim Y, Yu WR, Lee JU. Exfoliated graphene/thermoplastic elastomer nanocomposites with
improved wear properties for 3D printing. Compos Part B Eng. 2020;189:107912. doi:10.1016/j.compositesb.2020.107912