Research Article
BibTex RIS Cite
Year 2022, , 1 - 12, 30.06.2022
https://doi.org/10.46572/naturengs.1082785

Abstract

References

  • Aykurt Sepet, S. (2020). Pointwise bi-slant submersions. Celal Bayar University Journal of Science, 16(3): 339-343.
  • Aykurt Sepet, S. (2021). Conformal bi-slant submersions. Turk. J. Math., 45: 1705-1723.
  • Baird, P., Wood, J.C. (2003). Harmonic Morphisms between Riemannian Manifolds, Clarendon Press, Oxford.
  • Falcitelli, M., Ianus S., Pastore, A.M. (2004). Riemannian Submersions and Related Topics, World Scientific.
  • Fischer, A.E. (1992). Riemannian maps between Riemannian manifolds. Contemp. Math., 132: 331-366.
  • Gray, A. (1967). Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech., 16(7): 715- 737.
  • Nore, T. (1986). Second fundamental form of a map. Ann. di Mat. Pura ed Appl., 146: 281-310.
  • Ohnita, Y. (1987). On pluriharmonicity of stable harmonic maps, Jour. London Math. Soc., s2-35(3): 563-587.
  • O’Neill, B. (1966). The fundamental equations of a submersion. Michigan Math. J., 13: 458-469.
  • Şahin, B. (2010). Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems. Acta Appl. Math., 109(3): 829-847.
  • Şahin, B. (2017). Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Academic Press, Elsevier.
  • Şahin, B., Yanan, Ş. (2018). Conformal Riemannian maps from almost Hermitian manifolds. Turk. J. Math., 42(5): 2436-2451.
  • Şahin, B., Yanan, Ş. (2019). Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat, 33(4): 1125-1134.
  • Watson, B. (1976). Almost Hermitian submersions. J. Differ. Geom., 11(1): 147-165.
  • Yanan, Ş. (2021). Conformal generic Riemannian maps from almost Hermitian manifolds. TJOS, 6(2): 76-88.
  • Yanan, Ş. (2022). Conformal hemi-slant Riemannian maps. FCMS, 3(1): 57-74.
  • Yanan, Ş. (2022). Conformal semi-slant Riemannian maps from almost Hermitian manifolds onto Riemannian manifolds. Filomat, 36(5).
  • Yanan, Ş., Şahin, B. (2022). Conformal slant Riemannian maps. Int. J. Maps Math., 5(1): 78-100.
  • Yano, K., Kon, M. (1984). Structures on Manifolds, World Scientific.

Pluriharmonic conformal bi-slant Riemannian maps

Year 2022, , 1 - 12, 30.06.2022
https://doi.org/10.46572/naturengs.1082785

Abstract

In this study, notion of pluriharmonic map applied onto conformal bi-slant Riemannian maps from a Kaehler manifold to a Riemannian manifold to examine its geometric properties. Such that, relations between pluriharmonic map, horizontally homothetic map and totally geodesic map were obtained.

References

  • Aykurt Sepet, S. (2020). Pointwise bi-slant submersions. Celal Bayar University Journal of Science, 16(3): 339-343.
  • Aykurt Sepet, S. (2021). Conformal bi-slant submersions. Turk. J. Math., 45: 1705-1723.
  • Baird, P., Wood, J.C. (2003). Harmonic Morphisms between Riemannian Manifolds, Clarendon Press, Oxford.
  • Falcitelli, M., Ianus S., Pastore, A.M. (2004). Riemannian Submersions and Related Topics, World Scientific.
  • Fischer, A.E. (1992). Riemannian maps between Riemannian manifolds. Contemp. Math., 132: 331-366.
  • Gray, A. (1967). Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech., 16(7): 715- 737.
  • Nore, T. (1986). Second fundamental form of a map. Ann. di Mat. Pura ed Appl., 146: 281-310.
  • Ohnita, Y. (1987). On pluriharmonicity of stable harmonic maps, Jour. London Math. Soc., s2-35(3): 563-587.
  • O’Neill, B. (1966). The fundamental equations of a submersion. Michigan Math. J., 13: 458-469.
  • Şahin, B. (2010). Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems. Acta Appl. Math., 109(3): 829-847.
  • Şahin, B. (2017). Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Academic Press, Elsevier.
  • Şahin, B., Yanan, Ş. (2018). Conformal Riemannian maps from almost Hermitian manifolds. Turk. J. Math., 42(5): 2436-2451.
  • Şahin, B., Yanan, Ş. (2019). Conformal semi-invariant Riemannian maps from almost Hermitian manifolds. Filomat, 33(4): 1125-1134.
  • Watson, B. (1976). Almost Hermitian submersions. J. Differ. Geom., 11(1): 147-165.
  • Yanan, Ş. (2021). Conformal generic Riemannian maps from almost Hermitian manifolds. TJOS, 6(2): 76-88.
  • Yanan, Ş. (2022). Conformal hemi-slant Riemannian maps. FCMS, 3(1): 57-74.
  • Yanan, Ş. (2022). Conformal semi-slant Riemannian maps from almost Hermitian manifolds onto Riemannian manifolds. Filomat, 36(5).
  • Yanan, Ş., Şahin, B. (2022). Conformal slant Riemannian maps. Int. J. Maps Math., 5(1): 78-100.
  • Yano, K., Kon, M. (1984). Structures on Manifolds, World Scientific.
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Şener Yanan 0000-0003-1600-6522

Publication Date June 30, 2022
Submission Date March 4, 2022
Acceptance Date May 20, 2022
Published in Issue Year 2022

Cite

APA Yanan, Ş. (2022). Pluriharmonic conformal bi-slant Riemannian maps. NATURENGS, 3(1), 1-12. https://doi.org/10.46572/naturengs.1082785

Cited By

Conformal Hemi-Slant Riemannian Maps
Fundamentals of Contemporary Mathematical Sciences
https://doi.org/10.54974/fcmathsci.1033708