Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 77 - 81, 30.12.2024
https://doi.org/10.46572/naturengs.1592956

Abstract

References

  • Madhvacharyula, A. S., Pavan, A. V. S., Gorthi, S., Chitral, S., Venkaiah, N., & Kiran, D. V. (2022). In situ detection of welding defects: A review. Welding in the World, 66(4), 611-628.
  • Mohandas, R., Mongan, P., & Hayes, M. (2024). Ultrasonic Weld Quality Inspection Involving Strength Prediction and Defect Detection in Data-Constrained Training Environments. Sensors, 24(20), 6553.
  • Cengil, E., & Çınar, A. (2016). A new approach for image classification: convolutional neural network. European Journal of Technique (EJT), 6(2), 96-103.
  • Oh, S. J., Jung, M. J., Lim, C., & Shin, S. C. (2020). Automatic detection of welding defects using faster R-CNN. Applied Sciences, 10(23), 8629.
  • Palma-Ramírez, D., Ross-Veitía, B. D., Font-Ariosa, P., Espinel-Hernández, A., Sanchez-Roca, A., Carvajal-Fals, H., ... & Hernández-Herrera, H. (2024). Deep convolutional neural network for weld defect classification in radiographic images. Heliyon, 10(9).
  • Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM computing surveys (CSUR), 54(2), 1-38.
  • Stemmer, G., Lopez, J. A., Ontiveros, J. A., Raju, A., Thimmanaik, T., & Biswas, S. (2024). Unsupervised Welding Defect Detection Using Audio And Video. arXiv preprint arXiv:2409.02290.
  • Engbers, H., & Freitag, M. (2024). Automated model selection for multivariate anomaly detection in manufacturing systems. Journal of Intelligent Manufacturing, 1-19.
  • Özbay, E., Çinar, A., & Özbay, F. A. (2021). 3D Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural Networks. Traitement du Signal, 38(2), 269-280.
  • Sajeeda, A., & Hossain, B. M. (2022). Exploring generative adversarial networks and adversarial training. International Journal of Cognitive Computing in Engineering, 3, 78-89.
  • Guo, R., Liu, H., Xie, G., & Zhang, Y. (2021). Weld defect detection from imbalanced radiographic images based on contrast enhancement conditional generative adversarial network and transfer learning. IEEE Sensors Journal, 21(9), 10844-10853.
  • Welding Defect – Object Detection, Link address: https://www.kaggle.com/datasets/sukmaadhiwijaya/welding-defect-object-detection.
  • Cengil, E., Çinar, A., & Yildirim, M. (2021, September). A case study: Cat-dog face detector based on YOLOv5. In 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 149-153). IEEE.
  • Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024). Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458.
  • Kutlu, F., Ayaz, İ., & Garg, H. (2024). Integrating fuzzy metrics and negation operator in FCM algorithm via genetic algorithm for MRI image segmentation. Neural Computing and Applications, 1-21.
  • Ayaz, I., Kutlu, F., & Cömert, Z. (2024). DeepMaizeNet: A novel hybrid approach based on CBAM for implementing the doubled haploid technique. Agronomy Journal, 116(3), 861-870.

Weld Defect Detection with YOLOv10

Year 2024, Volume: 5 Issue: 2, 77 - 81, 30.12.2024
https://doi.org/10.46572/naturengs.1592956

Abstract

Welding is one of the important processes used in various industries with various applications. The change of weld defects has the feature of continuous critical monitoring of safety, quality control and cost-effectiveness in industrial production ranges. Although traditional high accuracy offers time-consuming, it depends on the product and operator experience. This study implements three-class detection of Bad Weld, Good Weld and defect with YOLOv10 object detection for automatic detection of weld defects. In the relevant data set, the model provides 0.939 Precision-Confidence and 0.91 Recall-Confidence values. The obtained results show that the model can detect defects. This study aims to reveal the potential of deep learning in the detection of weld defects, providing a faster, cost-effective and reliable solution.

References

  • Madhvacharyula, A. S., Pavan, A. V. S., Gorthi, S., Chitral, S., Venkaiah, N., & Kiran, D. V. (2022). In situ detection of welding defects: A review. Welding in the World, 66(4), 611-628.
  • Mohandas, R., Mongan, P., & Hayes, M. (2024). Ultrasonic Weld Quality Inspection Involving Strength Prediction and Defect Detection in Data-Constrained Training Environments. Sensors, 24(20), 6553.
  • Cengil, E., & Çınar, A. (2016). A new approach for image classification: convolutional neural network. European Journal of Technique (EJT), 6(2), 96-103.
  • Oh, S. J., Jung, M. J., Lim, C., & Shin, S. C. (2020). Automatic detection of welding defects using faster R-CNN. Applied Sciences, 10(23), 8629.
  • Palma-Ramírez, D., Ross-Veitía, B. D., Font-Ariosa, P., Espinel-Hernández, A., Sanchez-Roca, A., Carvajal-Fals, H., ... & Hernández-Herrera, H. (2024). Deep convolutional neural network for weld defect classification in radiographic images. Heliyon, 10(9).
  • Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM computing surveys (CSUR), 54(2), 1-38.
  • Stemmer, G., Lopez, J. A., Ontiveros, J. A., Raju, A., Thimmanaik, T., & Biswas, S. (2024). Unsupervised Welding Defect Detection Using Audio And Video. arXiv preprint arXiv:2409.02290.
  • Engbers, H., & Freitag, M. (2024). Automated model selection for multivariate anomaly detection in manufacturing systems. Journal of Intelligent Manufacturing, 1-19.
  • Özbay, E., Çinar, A., & Özbay, F. A. (2021). 3D Human Activity Classification with 3D Zernike Moment Based Convolutional, LSTM-Deep Neural Networks. Traitement du Signal, 38(2), 269-280.
  • Sajeeda, A., & Hossain, B. M. (2022). Exploring generative adversarial networks and adversarial training. International Journal of Cognitive Computing in Engineering, 3, 78-89.
  • Guo, R., Liu, H., Xie, G., & Zhang, Y. (2021). Weld defect detection from imbalanced radiographic images based on contrast enhancement conditional generative adversarial network and transfer learning. IEEE Sensors Journal, 21(9), 10844-10853.
  • Welding Defect – Object Detection, Link address: https://www.kaggle.com/datasets/sukmaadhiwijaya/welding-defect-object-detection.
  • Cengil, E., Çinar, A., & Yildirim, M. (2021, September). A case study: Cat-dog face detector based on YOLOv5. In 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 149-153). IEEE.
  • Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024). Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458.
  • Kutlu, F., Ayaz, İ., & Garg, H. (2024). Integrating fuzzy metrics and negation operator in FCM algorithm via genetic algorithm for MRI image segmentation. Neural Computing and Applications, 1-21.
  • Ayaz, I., Kutlu, F., & Cömert, Z. (2024). DeepMaizeNet: A novel hybrid approach based on CBAM for implementing the doubled haploid technique. Agronomy Journal, 116(3), 861-870.
There are 16 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

Emine Cengil 0000-0003-4313-8694

Publication Date December 30, 2024
Submission Date November 28, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Cengil, E. (2024). Weld Defect Detection with YOLOv10. NATURENGS, 5(2), 77-81. https://doi.org/10.46572/naturengs.1592956