Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 82 - 87, 30.12.2024
https://doi.org/10.46572/naturengs.1595329

Abstract

References

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. doi: 10.1017/CBO9781107415324.
  • V. Masson-Delmotte et al., Eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. doi: 10.1017/9781009157896.
  • N. R. Council, D. on E. and L. Studies, B. on A. S. and Climate, and A. C. C. P. on A. the S. of C. Change, Advancing the Science of Climate Change. National Academies Press, 2011.
  • N. Rajabi Kouyakhi, “CO2 emissions in the Middle East: Decoupling and decomposition analysis of carbon emissions, and projection of its future trajectory,” Sci. Total Environ., vol. 845, p. 157182, Nov. 2022, doi: 10.1016/j.scitotenv.2022.157182.
  • P. Friedlingstein et al., “Global Carbon Budget 2024,” Earth Syst. Sci. Data Discuss., pp. 1–133, Nov. 2024, doi: 10.5194/essd-2024-519.
  • H.-O. Pörtner et al., Eds., Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022.
  • D. L. Koç, B. Kapur, M. Ünlü, and R. Kanber, “The Situation of Water Resources and Agricultural Irrigation in Turkey,” Çukurova Tarım Ve Gıda Bilim. Derg., vol. 37, no. 2, Art. no. 2, Dec. 2022, doi: 10.36846/CJAFS.2022.80.
  • J. Xu, D. Cai, and J. Zhu, “Navigating the green wave: Urban climate adaptation and firms’ investment decisions-evidence from China,” Energy Econ., vol. 141, p. 108087, Jan. 2025, doi: 10.1016/j.eneco.2024.108087.
  • N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview,” in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., Boston, MA: Springer US, 2009, pp. 875–886. doi: 10.1007/978-0-387-09823-4_45.
  • L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
  • H. Pabuçcu and T. Bayramoğlu, “Yapay sinir ağlari ile CO2 emisyonu tahmini: Türkiye örneği,” Gazi Üniversitesi İktisadi Ve İdari Bilim. Fakültesi Derg., vol. 18, no. 3, pp. 762–778, 2016.
  • E. GARİP and A. B. OKTAY, “Forecasting CO2 Emission with Machine Learning Methods,” in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Sep. 2018, pp. 1–4. doi: 10.1109/IDAP.2018.8620767.
  • I. Pence, K. Kumaş, M. C. Siseci, and A. Akyüz, “Modeling of energy and emissions from animal manure using machine learning methods: the case of the Western Mediterranean Region, Turkey,” Environ. Sci. Pollut. Res., vol. 30, no. 9, pp. 22631–22652, Feb. 2023, doi: 10.1007/s11356-022-23780-5.
  • X. Li and X. Zhang, “A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China,” Environ. Sci. Pollut. Res., vol. 30, no. 55, pp. 117485–117502, Nov. 2023, doi: 10.1007/s11356-023-30428-5.
  • Y. Jin, A. Sharifi, Z. Li, S. Chen, S. Zeng, and S. Zhao, “Carbon emission prediction models: A review,” Sci. Total Environ., vol. 927, p. 172319, Jun. 2024, doi: 10.1016/j.scitotenv.2024.172319.
  • M. Yildirim, E. Cengil, Y. Eroglu, and A. Cinar, “Detection and classification of glioma, meningioma, pituitary tumor, and normal in brain magnetic resonance imaging using deep learning-based hybrid model,” Iran J. Comput. Sci., vol. 6, no. 4, pp. 455–464, Dec. 2023, doi: 10.1007/s42044-023-00139-8.
  • M. Yildirim, H. Bingol, E. Cengil, S. Aslan, and M. Baykara, “Automatic Classification of Particles in the Urine Sediment Test with the Developed Artificial Intelligence-Based Hybrid Model,” Diagnostics, vol. 13, no. 7, Art. no. 7, Jan. 2023, doi: 10.3390/diagnostics13071299.
  • “Glossary | DataBank.” Accessed: Dec. 15, 2024. [Online]. Available: https://databank.worldbank.org/metadataglossary/world-development-indicators/series/EN.ATM.CO2E.PC
  • Z. Han, B. Cui, L. Xu, J. Wang, and Z. Guo, “Coupling LSTM and CNN Neural Networks for Accurate Carbon Emission Prediction in 30 Chinese Provinces,” Sustainability, vol. 15, no. 18, Art. no. 18, Jan. 2023, doi: 10.3390/su151813934.
  • X. Wang, W. Liu, Y. Wang, and G. Yang, “A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM,” Fuel, vol. 310, p. 122486, Feb. 2022, doi: 10.1016/j.fuel.2021.122486.
  • B. Kocaman and V. Tümen, “Detection of electricity theft using data processing and LSTM method in distribution systems,” Sādhanā, vol. 45, no. 1, p. 286, Dec. 2020, doi: 10.1007/s12046-020-01512-0.
  • G. Tunnicliffe Wilson, “Time Series Analysis: Forecasting and Control,5th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978-1-118-67502-1,” J. Time Ser. Anal., vol. 37, p. n/a-n/a, Mar. 2016, doi: 10.1111/jtsa.12194.
  • G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, pp. 159–175, Jan. 2003, doi: 10.1016/S0925-2312(01)00702-0.
  • S. Kumari and S. K. Singh, “Machine learning-based time series models for effective CO2 emission prediction in India,” Environ. Sci. Pollut. Res., vol. 30, no. 55, pp. 116601–116616, Nov. 2023, doi: 10.1007/s11356-022-21723-8.
  • Çevre ve Şehircilik Bakanlığı, “Türkiye’nin Bilgilendirici Envanter Raporu (IIR) 2021.” Çevre ve Şehircilik Bakanlığı, 2021. Accessed: Dec. 15, 2024. [Online]. Available: https://webdosya.csb.gov.tr/db/cygm/menu/turkey-s-irr-2021_tr_20211101034946.pdf

Forecasting CO₂ Emissions with Machine Learning Methods: Türkiye Example and Future Trends

Year 2024, Volume: 5 Issue: 2, 82 - 87, 30.12.2024
https://doi.org/10.46572/naturengs.1595329

Abstract

Climate change is a critical problem that causes global environmental and social issues due to increased greenhouse gas emissions caused by human activities. Carbon dioxide (CO₂) emissions, in particular, are one of the main elements of global warming and have devastating effects on ecosystems. Keeping track of carbon dioxide emissions resulting from human activities like burning fossil fuels, clearing forests, and farming, as well as forecasting their future patterns, is essential for creating effective sustainable environmental strategies. The study utilized machine-learning models to evaluate CO₂ emissions per individual, using the dataset from the Global Carbon Atlas that has released in 2023.

In the study, the traditional ARIMA model and deep learning-based LSTM networks were comparatively discussed. The models were trained with the aim of predicting Türkiye's future CO₂ emission levels by learning from past data, and their performances were evaluated with MAE, MSE, RMSE, and R² metrics. The LSTM model achieved an R² score of 90.4%, while the ARIMA model achieved an R² score of 94.3%. The findings show that machine learning techniques are a powerful tool in the fight against climate change and provide valuable insights for policymakers. The findings of the study guide more effective monitoring of CO₂ emissions and determination of strategies for sustainable development goals.

References

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. doi: 10.1017/CBO9781107415324.
  • V. Masson-Delmotte et al., Eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. doi: 10.1017/9781009157896.
  • N. R. Council, D. on E. and L. Studies, B. on A. S. and Climate, and A. C. C. P. on A. the S. of C. Change, Advancing the Science of Climate Change. National Academies Press, 2011.
  • N. Rajabi Kouyakhi, “CO2 emissions in the Middle East: Decoupling and decomposition analysis of carbon emissions, and projection of its future trajectory,” Sci. Total Environ., vol. 845, p. 157182, Nov. 2022, doi: 10.1016/j.scitotenv.2022.157182.
  • P. Friedlingstein et al., “Global Carbon Budget 2024,” Earth Syst. Sci. Data Discuss., pp. 1–133, Nov. 2024, doi: 10.5194/essd-2024-519.
  • H.-O. Pörtner et al., Eds., Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2022.
  • D. L. Koç, B. Kapur, M. Ünlü, and R. Kanber, “The Situation of Water Resources and Agricultural Irrigation in Turkey,” Çukurova Tarım Ve Gıda Bilim. Derg., vol. 37, no. 2, Art. no. 2, Dec. 2022, doi: 10.36846/CJAFS.2022.80.
  • J. Xu, D. Cai, and J. Zhu, “Navigating the green wave: Urban climate adaptation and firms’ investment decisions-evidence from China,” Energy Econ., vol. 141, p. 108087, Jan. 2025, doi: 10.1016/j.eneco.2024.108087.
  • N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview,” in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., Boston, MA: Springer US, 2009, pp. 875–886. doi: 10.1007/978-0-387-09823-4_45.
  • L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
  • H. Pabuçcu and T. Bayramoğlu, “Yapay sinir ağlari ile CO2 emisyonu tahmini: Türkiye örneği,” Gazi Üniversitesi İktisadi Ve İdari Bilim. Fakültesi Derg., vol. 18, no. 3, pp. 762–778, 2016.
  • E. GARİP and A. B. OKTAY, “Forecasting CO2 Emission with Machine Learning Methods,” in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Sep. 2018, pp. 1–4. doi: 10.1109/IDAP.2018.8620767.
  • I. Pence, K. Kumaş, M. C. Siseci, and A. Akyüz, “Modeling of energy and emissions from animal manure using machine learning methods: the case of the Western Mediterranean Region, Turkey,” Environ. Sci. Pollut. Res., vol. 30, no. 9, pp. 22631–22652, Feb. 2023, doi: 10.1007/s11356-022-23780-5.
  • X. Li and X. Zhang, “A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China,” Environ. Sci. Pollut. Res., vol. 30, no. 55, pp. 117485–117502, Nov. 2023, doi: 10.1007/s11356-023-30428-5.
  • Y. Jin, A. Sharifi, Z. Li, S. Chen, S. Zeng, and S. Zhao, “Carbon emission prediction models: A review,” Sci. Total Environ., vol. 927, p. 172319, Jun. 2024, doi: 10.1016/j.scitotenv.2024.172319.
  • M. Yildirim, E. Cengil, Y. Eroglu, and A. Cinar, “Detection and classification of glioma, meningioma, pituitary tumor, and normal in brain magnetic resonance imaging using deep learning-based hybrid model,” Iran J. Comput. Sci., vol. 6, no. 4, pp. 455–464, Dec. 2023, doi: 10.1007/s42044-023-00139-8.
  • M. Yildirim, H. Bingol, E. Cengil, S. Aslan, and M. Baykara, “Automatic Classification of Particles in the Urine Sediment Test with the Developed Artificial Intelligence-Based Hybrid Model,” Diagnostics, vol. 13, no. 7, Art. no. 7, Jan. 2023, doi: 10.3390/diagnostics13071299.
  • “Glossary | DataBank.” Accessed: Dec. 15, 2024. [Online]. Available: https://databank.worldbank.org/metadataglossary/world-development-indicators/series/EN.ATM.CO2E.PC
  • Z. Han, B. Cui, L. Xu, J. Wang, and Z. Guo, “Coupling LSTM and CNN Neural Networks for Accurate Carbon Emission Prediction in 30 Chinese Provinces,” Sustainability, vol. 15, no. 18, Art. no. 18, Jan. 2023, doi: 10.3390/su151813934.
  • X. Wang, W. Liu, Y. Wang, and G. Yang, “A hybrid NOx emission prediction model based on CEEMDAN and AM-LSTM,” Fuel, vol. 310, p. 122486, Feb. 2022, doi: 10.1016/j.fuel.2021.122486.
  • B. Kocaman and V. Tümen, “Detection of electricity theft using data processing and LSTM method in distribution systems,” Sādhanā, vol. 45, no. 1, p. 286, Dec. 2020, doi: 10.1007/s12046-020-01512-0.
  • G. Tunnicliffe Wilson, “Time Series Analysis: Forecasting and Control,5th Edition, by George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel and Greta M. Ljung, 2015. Published by John Wiley and Sons Inc., Hoboken, New Jersey, pp. 712. ISBN: 978-1-118-67502-1,” J. Time Ser. Anal., vol. 37, p. n/a-n/a, Mar. 2016, doi: 10.1111/jtsa.12194.
  • G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, pp. 159–175, Jan. 2003, doi: 10.1016/S0925-2312(01)00702-0.
  • S. Kumari and S. K. Singh, “Machine learning-based time series models for effective CO2 emission prediction in India,” Environ. Sci. Pollut. Res., vol. 30, no. 55, pp. 116601–116616, Nov. 2023, doi: 10.1007/s11356-022-21723-8.
  • Çevre ve Şehircilik Bakanlığı, “Türkiye’nin Bilgilendirici Envanter Raporu (IIR) 2021.” Çevre ve Şehircilik Bakanlığı, 2021. Accessed: Dec. 15, 2024. [Online]. Available: https://webdosya.csb.gov.tr/db/cygm/menu/turkey-s-irr-2021_tr_20211101034946.pdf
There are 25 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

İbrahim Ayaz 0000-0003-3519-1882

Publication Date December 30, 2024
Submission Date December 2, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Ayaz, İ. (2024). Forecasting CO₂ Emissions with Machine Learning Methods: Türkiye Example and Future Trends. NATURENGS, 5(2), 82-87. https://doi.org/10.46572/naturengs.1595329