Research Article
BibTex RIS Cite
Year 2024, , 386 - 394, 30.10.2024
https://doi.org/10.28978/nesciences.1574458

Abstract

References

  • Akin, O., Gulmez, U. C., Sazak, O., Yagmur, O. U., & Angin, P. (2022). GreenSlice: An Energy-Efficient Secure Network Slicing Framework. Journal of Internet Services and Information Security, 12(1), 57-71.
  • Cen, J., Shen, P. K., & Zeng, Y. (2022). Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting. Journal of Colloid and Interface Science, 610, 213-220.
  • Ćurčić, M., Milinković, D., Petrović-Tomanić, O., & Đurić, D. (2018). Coenological Similarities of Diatoms in Wells and in other Water Biotopes in Bosnia and Herzegovina. Archives for Technical Sciences, 1(18), 71–80.
  • Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., & Strasser, P. (2010). The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem, 2(7), 724-761.
  • Du, P., & Eisenberg, R. (2012). Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy & Environmental Science, 5(3), 6012-6021.
  • Götz, M., Lefebvre, J., Mörs, F., Koch, A. M., Graf, F., Bajohr, S., & Kolb, T. (2016). Renewable Power-to-Gas: A technological and economic review. Renewable energy, 85, 1371-1390.
  • Guo, Y., Park, T., Yi, J. W., Henzie, J., Kim, J., Wang, Z., & Yamauchi, Y. (2019). Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting. Advanced Materials, 31(17), 1807134. https://doi.org/10.1002/adma.201807134
  • Hong, W. T., Risch, M., Stoerzinger, K. A., Grimaud, A., Suntivich, J., & Shao-Horn, Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 8(5), 1404-1427.
  • Husam, S., & Mohammad, H. (2021). Adaptive Probabilistic Model for Energy-Efficient Distance-based Clustering in WSNs (Adapt-P): A LEACH-based Analytical Study. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 12(3), 65-86.
  • Joo, J., Kim, T., Lee, J., Choi, S. I., & Lee, K. (2019). Morphology‐controlled metal sulfides and phosphides for electrochemical water splitting. Advanced materials, 31(14), 1806682. https://doi.org/10.1002/adma.201806682
  • Kuleshov, V. N., Korovin, N. V., Kuleshov, N. V., Udris, E. Ya., & Bakhin, A. N. (2012). Development of new electrocatalysts for low-temperature water electrolysis. Electrochemical Power Engineering, 12(2), 51–58.
  • Li, M., Luo, Y., Jia, C., Zhang, Q., Luo, G., Zhao, L., & Jiang, Z. (2022). Facile synthesis of bimetal nickel cobalt phosphate nanostructures for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 893, 162340. https://doi.org/10.1016/j.jallcom.2021.162340
  • Li, R., Li, X., Yu, D., Li, L., Yang, G., Zhang, K., & Peng, S. (2019). Ni3ZnC0. 7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting. Carbon, 148, 496-503.
  • Li, X., Hao, X., Abudula, A., & Guan, G. (2016). Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 4(31), 11973-12000.
  • Liu, Y., Jiang, S., Li, S., Zhou, L., Li, Z., Li, J., & Shao, M. (2019). Interface engineering of (Ni, Fe) S2@ MoS2 heterostructures for synergetic electrochemical water splitting. Applied Catalysis B: Environmental, 247, 107-114.
  • Man, I. C., Su, H. Y., Calle‐Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3(7), 1159-1165.
  • McCrory, C. C., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135(45), 16977-16987.
  • Mo, Q., Zhang, W., He, L., Yu, X., & Gao, Q. (2019). Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Applied Catalysis B: Environmental, 244, 620-627.
  • Morales-Guio, C. G., Stern, L. A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555-6569.
  • Nguyen, V. N., & Blum, L. (2015). Electrochemical Generation of Syngas from Water and Carbon Dioxide at Industrially Important Rates. Chemie Ingenieur Technik, 87, 354-375.
  • Rashidova, K., Minavvarov, A., Kattaev, N., & Akbarov, H. (2023). Structural features of bimetallic ni-co-p phosphide electrocatalyst intended for hydrogen fuel generation. Uzbek Chemical Journal/O'Zbekiston Kimyo Jurnali, (1).
  • Ren, R., Zhao, Z., Meng, Z., & Wang, X. (2022). Hollow heterostructure design enables self-cleaning surface for enhanced polysulfides conversion in advanced lithium-sulfur batteries. Journal of Colloid and Interface Science, 608, 1576-1584.
  • Shi, Y., & Zhang, B. (2016). Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45(6), 1529-1541.
  • Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110(11), 6446-6473.
  • Yağız, E., Ozyilmaz, G., & Ozyilmaz, A. T. (2022). Optimization of graphite-mineral oil ratio with response surface methodology in glucose oxidase-based carbon paste electrode design. Natural and Engineering Sciences, 7(1), 22-33.
  • Yan, Y., Xia, B. Y., Zhao, B., & Wang, X. (2016). A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 4(45), 17587-17603.
  • Zou, X., & Zhang, Y. (2015). Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44(15), 5148-5180.

Synthesis and Properties of Nickel Copper Phosphorus (NixCuyPz) Catalyst

Year 2024, , 386 - 394, 30.10.2024
https://doi.org/10.28978/nesciences.1574458

Abstract

Nowadays, scientists around the world are paying more attention to renewable hydrogen fuels. There is a growing need for precious metal catalysts to calculate the cost of obtaining renewable energy, an efficient method of producing H2 by electrolysis of water, as well as to facilitate the decomposition of water into its elemental parts. Today, due to the increase in the problem of the shortage of energy resources and the growing of CO2 emissions into the atmosphere, attention is being paid to hydrogen energy. However, the production of H2 requires low-cost, efficient catalysts that facilitate hydrogen/oxygen separation reactions in the water splitting. For this purpose, intermediate metal phosphides (Fe, Co, Ni, Cu, Mo, W) were used as effective electrocatalysts for water decomposition. The catalytic activity of intermediate metal phosphides to form hydrogen is largely dependent on the phosphorus content, but the P atoms play an important role in increasing efficiency. The production of hydrogen by electrolysis of water on the basis of bifunctional catalysts has good prospects for use in the energy industry. In the article, the one-step hydrothermal synthesis method and physico-chemical (electronic structure and conductivity, structure morphology) of double metal phosphide with NixCuyPz composition were studied.

References

  • Akin, O., Gulmez, U. C., Sazak, O., Yagmur, O. U., & Angin, P. (2022). GreenSlice: An Energy-Efficient Secure Network Slicing Framework. Journal of Internet Services and Information Security, 12(1), 57-71.
  • Cen, J., Shen, P. K., & Zeng, Y. (2022). Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting. Journal of Colloid and Interface Science, 610, 213-220.
  • Ćurčić, M., Milinković, D., Petrović-Tomanić, O., & Đurić, D. (2018). Coenological Similarities of Diatoms in Wells and in other Water Biotopes in Bosnia and Herzegovina. Archives for Technical Sciences, 1(18), 71–80.
  • Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., & Strasser, P. (2010). The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem, 2(7), 724-761.
  • Du, P., & Eisenberg, R. (2012). Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy & Environmental Science, 5(3), 6012-6021.
  • Götz, M., Lefebvre, J., Mörs, F., Koch, A. M., Graf, F., Bajohr, S., & Kolb, T. (2016). Renewable Power-to-Gas: A technological and economic review. Renewable energy, 85, 1371-1390.
  • Guo, Y., Park, T., Yi, J. W., Henzie, J., Kim, J., Wang, Z., & Yamauchi, Y. (2019). Nanoarchitectonics for transition‐metal‐sulfide‐based electrocatalysts for water splitting. Advanced Materials, 31(17), 1807134. https://doi.org/10.1002/adma.201807134
  • Hong, W. T., Risch, M., Stoerzinger, K. A., Grimaud, A., Suntivich, J., & Shao-Horn, Y. (2015). Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 8(5), 1404-1427.
  • Husam, S., & Mohammad, H. (2021). Adaptive Probabilistic Model for Energy-Efficient Distance-based Clustering in WSNs (Adapt-P): A LEACH-based Analytical Study. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 12(3), 65-86.
  • Joo, J., Kim, T., Lee, J., Choi, S. I., & Lee, K. (2019). Morphology‐controlled metal sulfides and phosphides for electrochemical water splitting. Advanced materials, 31(14), 1806682. https://doi.org/10.1002/adma.201806682
  • Kuleshov, V. N., Korovin, N. V., Kuleshov, N. V., Udris, E. Ya., & Bakhin, A. N. (2012). Development of new electrocatalysts for low-temperature water electrolysis. Electrochemical Power Engineering, 12(2), 51–58.
  • Li, M., Luo, Y., Jia, C., Zhang, Q., Luo, G., Zhao, L., & Jiang, Z. (2022). Facile synthesis of bimetal nickel cobalt phosphate nanostructures for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 893, 162340. https://doi.org/10.1016/j.jallcom.2021.162340
  • Li, R., Li, X., Yu, D., Li, L., Yang, G., Zhang, K., & Peng, S. (2019). Ni3ZnC0. 7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting. Carbon, 148, 496-503.
  • Li, X., Hao, X., Abudula, A., & Guan, G. (2016). Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 4(31), 11973-12000.
  • Liu, Y., Jiang, S., Li, S., Zhou, L., Li, Z., Li, J., & Shao, M. (2019). Interface engineering of (Ni, Fe) S2@ MoS2 heterostructures for synergetic electrochemical water splitting. Applied Catalysis B: Environmental, 247, 107-114.
  • Man, I. C., Su, H. Y., Calle‐Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3(7), 1159-1165.
  • McCrory, C. C., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 135(45), 16977-16987.
  • Mo, Q., Zhang, W., He, L., Yu, X., & Gao, Q. (2019). Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Applied Catalysis B: Environmental, 244, 620-627.
  • Morales-Guio, C. G., Stern, L. A., & Hu, X. (2014). Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 43(18), 6555-6569.
  • Nguyen, V. N., & Blum, L. (2015). Electrochemical Generation of Syngas from Water and Carbon Dioxide at Industrially Important Rates. Chemie Ingenieur Technik, 87, 354-375.
  • Rashidova, K., Minavvarov, A., Kattaev, N., & Akbarov, H. (2023). Structural features of bimetallic ni-co-p phosphide electrocatalyst intended for hydrogen fuel generation. Uzbek Chemical Journal/O'Zbekiston Kimyo Jurnali, (1).
  • Ren, R., Zhao, Z., Meng, Z., & Wang, X. (2022). Hollow heterostructure design enables self-cleaning surface for enhanced polysulfides conversion in advanced lithium-sulfur batteries. Journal of Colloid and Interface Science, 608, 1576-1584.
  • Shi, Y., & Zhang, B. (2016). Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 45(6), 1529-1541.
  • Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110(11), 6446-6473.
  • Yağız, E., Ozyilmaz, G., & Ozyilmaz, A. T. (2022). Optimization of graphite-mineral oil ratio with response surface methodology in glucose oxidase-based carbon paste electrode design. Natural and Engineering Sciences, 7(1), 22-33.
  • Yan, Y., Xia, B. Y., Zhao, B., & Wang, X. (2016). A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 4(45), 17587-17603.
  • Zou, X., & Zhang, Y. (2015). Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 44(15), 5148-5180.
There are 27 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology (Other)
Journal Section Articles
Authors

Kamila Rashidova 0000-0001-5951-2148

Nuriddin Kattaev This is me 0000-0002-0276-2717

Khamdam Akbarov This is me 0000-0002-3225-2427

Gulnora Karabaeva This is me 0009-0008-8627-4147

Zukhra Yakhshieva This is me 0000-0003-4603-2035

Marat Sultonov This is me 0000-0003-4751-5397

Publication Date October 30, 2024
Submission Date October 27, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2024

Cite

APA Rashidova, K., Kattaev, N., Akbarov, K., Karabaeva, G., et al. (2024). Synthesis and Properties of Nickel Copper Phosphorus (NixCuyPz) Catalyst. Natural and Engineering Sciences, 9(2), 386-394. https://doi.org/10.28978/nesciences.1574458

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015