Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 1, 46 - 56, 30.05.2024
https://doi.org/10.28978/nesciences.1489228

Abstract

References

  • Abdullah, D. (2020). A Linear Antenna Array for Wireless Communications. National Journal of Antennas and Propagation (NJAP), 2(1), 19-24.
  • Afghan, F.R., Habib, H., Akhunzada, N.A., Wafa, W., Shirzad, M.D., Sahak, K., & Ahmadzai, M.R. (2022). Customization of GIS for spatial and temporal analyses of Air Quality Index trends in Kabul city. Modeling Earth Systems and Environment, 8(4), 5097-5106.
  • Air Quality Open Data Platform (2022). https://aqicn.org/data-platf orm/covid19/verify/b8ddd06f-bbff-4e59-ba34-54f0af36b560. Accessed 21 Jan 2023.
  • Albadr, M.A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 12(11), 1758. https://doi.org/10.3390/sym12111758
  • Arora, G. (2024). Desing of VLSI Architecture for a flexible testbed of Artificial Neural Network for training and testing on FPGA. Journal of VLSI Circuits and Systems, 6(1), 30-35.
  • Asadov, B. (2018). The Current State of Artificial Intelligence (AI) and Implications for Computer Technologies. International Journal of Communication and Computer Technologies (IJCCTS), 6(1), 15-18.
  • Barthwal, A., & Acharya, D. (2022). Performance analysis of sensing-based extreme value models for urban air pollution peaks. Modeling Earth Systems and Environment, 8(3), 4149-4163.
  • Culpa, E.M., Mendoza, J.I., Ramirez, J.G., Yap, A.L., Fabian, E., & Astillo, P.V. (2021). A Cloud-Linked Ambient Air Quality Monitoring Apparatus for Gaseous Pollutants in Urban Areas. Journal of Internet Services and Information Security, 11(1), 64-79.
  • Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O'Reilly, S., Brauer, M., & Yan, C. (2022). Pollution and health: a progress update. The Lancet Planetary Health, 6(6), e535-e547.
  • Gomathi, G., Emilyn, J.J., Thamburaj, A.S., & Kumar, V. (2022). Real time air pollution prediction in urban cities using deep learning algorithms and IoT. In IEEE 7th International Conference on Communication and Electronics Systems (ICCES), 340-343.
  • Harandizadeh, H., & Armaghani, D.J. (2021). Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA. Applied Soft Computing, 99, 106904. https://doi.org/10.1016/j.asoc.2020.106904
  • Kaloop, M. R., Bardhan, A., Kardani, N., Samui, P., Hu, J. W., & Ramzy, A. (2021). Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. Renewable and Sustainable Energy Reviews, 148, 111315. https://doi.org/10.1016/j.rser.2021.111315
  • Knezevic, D., & Knezevic, N. (2019). Air Pollution-Present and Future Challenges, Case Study Sanitary Landfill Brijesnica in Bijeljina. Arhiv za tehničke nauke, 1(20), 73–80.
  • Okoji, A.I., Anozie, A.N., Omoleye, J.A., Taiwo, A.E., & Babatunde, D.E. (2023). Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln. Environmental Science and Pollution Research, 30(19), 54835-54845.
  • Prasad Babu, P., & Vasumathi, A. (2023). Role of Artificial Intelligence in Project Efficiency Mediating with Perceived Organizational Support in the Indian IT Sector. Indian Journal of Information Sources and Services, 13(2), 39–45.
  • Purnomo, M.R., & Anugerah, A.R. (2020). Achieving sustainable environment through prediction of air pollutants in Yogyakarta using adaptive neuro fuzzy inference system. J. Eng. Sci. Technol., 15(5), 2995-3012.
  • Saini, J., Dutta, M., & Marques, G. (2021). Fuzzy inference system tree with particle swarm optimization and genetic algorithm: a novel approach for PM10 forecasting. Expert Systems with Applications, 183, 115376. https://doi.org/10.1016/j.eswa.2021.115376
  • Saini, J., Dutta, M., & Marques, G. (2022). A novel application of fuzzy inference system optimized with particle swarm optimization and genetic algorithm for PM10 prediction. Soft Computing, 26(18), 9573-9586.
  • Saini, J., Dutta, M., & Marques, G. (2022). ADFIST: adaptive dynamic fuzzy inference system tree driven by optimized knowledge base for indoor air quality assessment. Sensors, 22(3), 1008. https://doi.org/10.3390/s22031008
  • Saini, J., Dutta, M., & Marques, G. (2022). Modeling indoor pm2. 5 using adaptive dynamic fuzzy inference system tree (adfist) on Internet of things-based sensor network data. Internet of Things, 20, 100628. https://doi.org/10.1016/j.iot.2022.100628
  • Sovannarith, H., Phet, A., & Chakchai, S. (2023). A Novel Video-on-Demand Caching Scheme using Hybrid Fuzzy Logic Least Frequency and Recently Used with Support Vector Machine. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(1), 15-36.
  • Yilmaz, M., Tosunoğlu, F., Kaplan, N.H., Üneş, F., & Hanay, Y.S. (2022). Predicting monthly streamflow using artificial neural networks and wavelet neural networks models. Modeling Earth Systems and Environment, 8(4), 5547-5563.
  • Yonar, A., & Yonar, H. (2023). Modeling air pollution by integrating ANFIS and metaheuristic algorithms. Modeling Earth Systems and Environment, 9(2), 1621-1631.
  • Zeinalnezhad, M., Chofreh, A.G., Goni, F.A., & Klemeš, J.J. (2020). Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System. Journal of Cleaner Production, 261, 121218. https://doi.org/10.1016/j.jclepro.2020.121218

Prediction of Air Pollution Utilizing an Adaptive Network Fuzzy Inference System with the Aid of Genetic Algorithm

Year 2024, Volume: 9 Issue: 1, 46 - 56, 30.05.2024
https://doi.org/10.28978/nesciences.1489228

Abstract

With the growth of modern lifestyles and the growing urbanization and reliance on fossil fuels, the need for tracking and monitoring air pollution has become more significant. This research used existing information on significant pollutants to forecast their future condition using time-series modeling. Most studies have used Autoregressive Integrated Moving Average (ARIMA) and Logistic Regression (LR) methods to analyze time-series data. Still, employing an Adaptive Neuro Fuzzy Inference System (ANFIS) for this purpose has been infrequent. Conventional time-series prediction approaches use the assumption that there is a linear connection among variables. However, in air pollution modeling, there are non-linear and intricate factors. This paper used an Adaptive Network Fuzzy Inference System with the help of Improved Genetic Algorithm (ANFIS-IGA) to predict air pollution. This work aimed to address this constraint by enhancing the precision of everyday air pollutant prediction via the analysis of time-series data using ANFIS modeling. Air pollution data, including Fine Particulate Matter (FPM), CO, SO2, O3, and NO2, is gathered from the Air Quality Open Data Platform. This research examines the surveillance and prediction of air pollution concentration in indoor and outdoor situations using the ANFIS-IGA model. The model's effectiveness was enhanced and optimized for using IGA. The results indicate that the proposed ANFIS-IGA framework achieved superior performance compared to other models, as shown by the Root Mean Square Error (RMSE) value of 0.052658.

References

  • Abdullah, D. (2020). A Linear Antenna Array for Wireless Communications. National Journal of Antennas and Propagation (NJAP), 2(1), 19-24.
  • Afghan, F.R., Habib, H., Akhunzada, N.A., Wafa, W., Shirzad, M.D., Sahak, K., & Ahmadzai, M.R. (2022). Customization of GIS for spatial and temporal analyses of Air Quality Index trends in Kabul city. Modeling Earth Systems and Environment, 8(4), 5097-5106.
  • Air Quality Open Data Platform (2022). https://aqicn.org/data-platf orm/covid19/verify/b8ddd06f-bbff-4e59-ba34-54f0af36b560. Accessed 21 Jan 2023.
  • Albadr, M.A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 12(11), 1758. https://doi.org/10.3390/sym12111758
  • Arora, G. (2024). Desing of VLSI Architecture for a flexible testbed of Artificial Neural Network for training and testing on FPGA. Journal of VLSI Circuits and Systems, 6(1), 30-35.
  • Asadov, B. (2018). The Current State of Artificial Intelligence (AI) and Implications for Computer Technologies. International Journal of Communication and Computer Technologies (IJCCTS), 6(1), 15-18.
  • Barthwal, A., & Acharya, D. (2022). Performance analysis of sensing-based extreme value models for urban air pollution peaks. Modeling Earth Systems and Environment, 8(3), 4149-4163.
  • Culpa, E.M., Mendoza, J.I., Ramirez, J.G., Yap, A.L., Fabian, E., & Astillo, P.V. (2021). A Cloud-Linked Ambient Air Quality Monitoring Apparatus for Gaseous Pollutants in Urban Areas. Journal of Internet Services and Information Security, 11(1), 64-79.
  • Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G., Bose-O'Reilly, S., Brauer, M., & Yan, C. (2022). Pollution and health: a progress update. The Lancet Planetary Health, 6(6), e535-e547.
  • Gomathi, G., Emilyn, J.J., Thamburaj, A.S., & Kumar, V. (2022). Real time air pollution prediction in urban cities using deep learning algorithms and IoT. In IEEE 7th International Conference on Communication and Electronics Systems (ICCES), 340-343.
  • Harandizadeh, H., & Armaghani, D.J. (2021). Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA. Applied Soft Computing, 99, 106904. https://doi.org/10.1016/j.asoc.2020.106904
  • Kaloop, M. R., Bardhan, A., Kardani, N., Samui, P., Hu, J. W., & Ramzy, A. (2021). Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. Renewable and Sustainable Energy Reviews, 148, 111315. https://doi.org/10.1016/j.rser.2021.111315
  • Knezevic, D., & Knezevic, N. (2019). Air Pollution-Present and Future Challenges, Case Study Sanitary Landfill Brijesnica in Bijeljina. Arhiv za tehničke nauke, 1(20), 73–80.
  • Okoji, A.I., Anozie, A.N., Omoleye, J.A., Taiwo, A.E., & Babatunde, D.E. (2023). Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln. Environmental Science and Pollution Research, 30(19), 54835-54845.
  • Prasad Babu, P., & Vasumathi, A. (2023). Role of Artificial Intelligence in Project Efficiency Mediating with Perceived Organizational Support in the Indian IT Sector. Indian Journal of Information Sources and Services, 13(2), 39–45.
  • Purnomo, M.R., & Anugerah, A.R. (2020). Achieving sustainable environment through prediction of air pollutants in Yogyakarta using adaptive neuro fuzzy inference system. J. Eng. Sci. Technol., 15(5), 2995-3012.
  • Saini, J., Dutta, M., & Marques, G. (2021). Fuzzy inference system tree with particle swarm optimization and genetic algorithm: a novel approach for PM10 forecasting. Expert Systems with Applications, 183, 115376. https://doi.org/10.1016/j.eswa.2021.115376
  • Saini, J., Dutta, M., & Marques, G. (2022). A novel application of fuzzy inference system optimized with particle swarm optimization and genetic algorithm for PM10 prediction. Soft Computing, 26(18), 9573-9586.
  • Saini, J., Dutta, M., & Marques, G. (2022). ADFIST: adaptive dynamic fuzzy inference system tree driven by optimized knowledge base for indoor air quality assessment. Sensors, 22(3), 1008. https://doi.org/10.3390/s22031008
  • Saini, J., Dutta, M., & Marques, G. (2022). Modeling indoor pm2. 5 using adaptive dynamic fuzzy inference system tree (adfist) on Internet of things-based sensor network data. Internet of Things, 20, 100628. https://doi.org/10.1016/j.iot.2022.100628
  • Sovannarith, H., Phet, A., & Chakchai, S. (2023). A Novel Video-on-Demand Caching Scheme using Hybrid Fuzzy Logic Least Frequency and Recently Used with Support Vector Machine. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(1), 15-36.
  • Yilmaz, M., Tosunoğlu, F., Kaplan, N.H., Üneş, F., & Hanay, Y.S. (2022). Predicting monthly streamflow using artificial neural networks and wavelet neural networks models. Modeling Earth Systems and Environment, 8(4), 5547-5563.
  • Yonar, A., & Yonar, H. (2023). Modeling air pollution by integrating ANFIS and metaheuristic algorithms. Modeling Earth Systems and Environment, 9(2), 1621-1631.
  • Zeinalnezhad, M., Chofreh, A.G., Goni, F.A., & Klemeš, J.J. (2020). Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System. Journal of Cleaner Production, 261, 121218. https://doi.org/10.1016/j.jclepro.2020.121218
There are 24 citations in total.

Details

Primary Language English
Subjects Water Quality and Water Pollution, Pollution and Contamination (Other)
Journal Section Articles
Authors

Praveenchandar J This is me 0000-0002-5735-8316

Venkatesh K This is me 0000-0002-5966-013X

Mohanraj B This is me 0000-0001-5153-7359

Prasad M This is me 0000-0002-9628-2190

Udayakumar R This is me 0000-0002-1395-583X

Publication Date May 30, 2024
Submission Date May 24, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA J, P., K, V., B, M., M, P., et al. (2024). Prediction of Air Pollution Utilizing an Adaptive Network Fuzzy Inference System with the Aid of Genetic Algorithm. Natural and Engineering Sciences, 9(1), 46-56. https://doi.org/10.28978/nesciences.1489228

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015