Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 1, 312 - 324, 01.04.2025
https://doi.org/10.28978/nesciences.1648720

Abstract

References

  • Al-Jashaami, S. H. K., Almudhafar, S. M., & Almayahi, B. A. (2024). The Impact of Climatic Characteristics on Increasing Soil Salinity in Manathira District Center. Natural and Engineering Sciences, 9(2), 426-440.
  • Balagopal, M. (2019). Managerial Skill for Library Professionals in the Digital Library Environment. Indian Journal of Information Sources and Services, 9(S1), 37-40.
  • Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1), 21-37.
  • Bosco, N. J., Ildephonse, M., & Alexandre, N. (2018). Agriculture and Food Security in Gicumbi District, Northern Province of Rwanda. International Academic Journal of Social Sciences, 5(1), 154–168. https://doi.org/10.9756/IAJSS/V5I1/1810014.
  • Chele, K. H., Tinte, M. M., Piater, L. A., Dubery, I. A., & Tugizimana, F. (2021). Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites, 11(11), https://doi.org/10.3390/metabo11110724.
  • Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842-862.
  • Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310-318.
  • Hafez, E. M., Omara, A. E. D., Alhumaydhi, F. A., & El‐Esawi, M. A. (2021). Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiologia Plantarum, 172(2), 587-602.
  • Hafez, E. M., Osman, H. S., Gowayed, S. M., Okasha, S. A., Omara, A. E. D., Sami, R., ... & Abd El-Razek, U. A. (2021). Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy, 11(4), 676.
  • Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., Rengasamy, P., ... & Taleisnik, E. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in agronomy, 169, 1-191.
  • Khamidov, M., Ishchanov, J., Hamidov, A., Donmez, C., & Djumaboev, K. (2022). Assessment of soil salinity changes under the climate change in the Khorezm region, Uzbekistan. International Journal of Environmental Research and Public Health, 19(14), https://doi.org/10.3390/ijerph19148794.
  • Khasanov, S., Kulmatov, R., Li, F., van Amstel, A., Bartholomeus, H., Aslanov, I., ... & Chen, G. (2023). Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems & Environment, 342, 108262.
  • Knežević, D., & Knežević, N. (2019). Air Pollution-Present and Future Challenges, Case Study Sanitary Landfill Brijesnica in Bijeljina.
  • Lai, Y., You, Z., & Zhang, J. (2021). Constitutive models and salt migration mechanisms of saline frozen soil and the-state-of-the-practice countermeasures in cold regions. Sciences in Cold and Arid Regions, 13(1), 1-17.
  • Mishra, A. K., Das, R., George Kerry, R., Biswal, B., Sinha, T., Sharma, S., ... & Kumar, M. (2023). Promising management strategies to improve crop sustainability and to amend soil salinity. Frontiers in Environmental Science, 10, https://doi.org/10.3389/fenvs.2022.962581.
  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, https://doi.org/10.1016/j.jenvman.2020.111736.
  • Nasrallehzadeh Saravi, H., Safari, R., Naderi, M. J., Makhough, A., Foong, S. Y., Baloei, M., ... & Razeghian, G. R. (2023). Spatial-temporal investigation of water quality and pollution of Sirvan River (Sanandaj-Kurdistan). International Journal of Aquatic Research and Environmental Studies, 3(2), 141-156.
  • Omara, A. E. D., Hafez, E. M., Osman, H. S., Rashwan, E., El-Said, M. A., Alharbi, K., ... & Gowayed, S. M. (2022). Collaborative impact of compost and beneficial rhizobacteria on soil properties, physiological attributes, and productivity of wheat subjected to deficit irrigation in salt affected soil. Plants, 11(7), https://doi.org/10.3390/plants11070877.
  • Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment, 764, https://doi.org/10.1016/j.scitotenv.2020.144164.
  • Syed, A., Sarwar, G., Shah, S. H., & Muhammad, S. (2021). Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops. Communications in Soil Science and Plant Analysis, 52(3), 183-200.
  • Xie, W., Yang, J., Gao, S., Yao, R., & Wang, X. (2022). The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils. Water, 14(18), https://doi.org/10.3390/w14182804.
  • Zhu, Z., Jiao, T., & LiInnovative, Z. (2024). Applications of IoT in Smart Home Systems: Enhancing Environmental Monitoring with Integrated Sensor Technologies and MQTT Protocol. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(4), 69-89. https://doi.org/10.58346/JOWUA.2024.I4.006

Spatial Modeling of Soil Salinity and Its Impact on Nutrient Availability and Agricultural Productivity

Year 2025, Volume: 10 Issue: 1, 312 - 324, 01.04.2025
https://doi.org/10.28978/nesciences.1648720

Abstract

The geographical variability of a variety of soil physical and chemical characteristics was investigated in agricultural regions with saline-alkaline soils. The characteristics that were analyzed included pH, magnesium (Mg), sodium (Na), exchangeable sodium percentage (ESP), sodium absorption ratio (SAR), bulk density (BD), calcium (Ca), available phosphorus (AP), available potassium (AK), electrical conductivity (EC), soil water content (WC), gypsum content, organic carbon (OC), and soil texture fractions. Soil samples were collected at five different depths (0–250 cm) at many places. To evaluate the geographical distribution of these soil qualities, the data were examined using geostatistical techniques, particularly semivariogram models. The results revealed significant spatial variability, with varying levels of spatial dependence across the research area. Electrical conductivity (EC) exhibited the highest spatial variability, highlighting its critical role in soil salinity and environmental pollution. pH and Available Potassium (AK), varied less throughout the research region. The spatial distribution of soil texture, SAR, and ESP exhibited strong spatial dependence. OC, BD, and Gypsum Content, however, showed moderate spatial dependence. The spatial dependencies of soil properties include external aspects, such as the composition of the bedrock, environmental pollution, agricultural pollution, drainage, and groundwater levels. Understanding these would be fundamental for assessing the impacts of salinization on the availability of nutrients and the productivity of agriculture.

References

  • Al-Jashaami, S. H. K., Almudhafar, S. M., & Almayahi, B. A. (2024). The Impact of Climatic Characteristics on Increasing Soil Salinity in Manathira District Center. Natural and Engineering Sciences, 9(2), 426-440.
  • Balagopal, M. (2019). Managerial Skill for Library Professionals in the Digital Library Environment. Indian Journal of Information Sources and Services, 9(S1), 37-40.
  • Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1), 21-37.
  • Bosco, N. J., Ildephonse, M., & Alexandre, N. (2018). Agriculture and Food Security in Gicumbi District, Northern Province of Rwanda. International Academic Journal of Social Sciences, 5(1), 154–168. https://doi.org/10.9756/IAJSS/V5I1/1810014.
  • Chele, K. H., Tinte, M. M., Piater, L. A., Dubery, I. A., & Tugizimana, F. (2021). Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites, 11(11), https://doi.org/10.3390/metabo11110724.
  • Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842-862.
  • Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310-318.
  • Hafez, E. M., Omara, A. E. D., Alhumaydhi, F. A., & El‐Esawi, M. A. (2021). Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiologia Plantarum, 172(2), 587-602.
  • Hafez, E. M., Osman, H. S., Gowayed, S. M., Okasha, S. A., Omara, A. E. D., Sami, R., ... & Abd El-Razek, U. A. (2021). Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy, 11(4), 676.
  • Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., Rengasamy, P., ... & Taleisnik, E. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in agronomy, 169, 1-191.
  • Khamidov, M., Ishchanov, J., Hamidov, A., Donmez, C., & Djumaboev, K. (2022). Assessment of soil salinity changes under the climate change in the Khorezm region, Uzbekistan. International Journal of Environmental Research and Public Health, 19(14), https://doi.org/10.3390/ijerph19148794.
  • Khasanov, S., Kulmatov, R., Li, F., van Amstel, A., Bartholomeus, H., Aslanov, I., ... & Chen, G. (2023). Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agriculture, Ecosystems & Environment, 342, 108262.
  • Knežević, D., & Knežević, N. (2019). Air Pollution-Present and Future Challenges, Case Study Sanitary Landfill Brijesnica in Bijeljina.
  • Lai, Y., You, Z., & Zhang, J. (2021). Constitutive models and salt migration mechanisms of saline frozen soil and the-state-of-the-practice countermeasures in cold regions. Sciences in Cold and Arid Regions, 13(1), 1-17.
  • Mishra, A. K., Das, R., George Kerry, R., Biswal, B., Sinha, T., Sharma, S., ... & Kumar, M. (2023). Promising management strategies to improve crop sustainability and to amend soil salinity. Frontiers in Environmental Science, 10, https://doi.org/10.3389/fenvs.2022.962581.
  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, https://doi.org/10.1016/j.jenvman.2020.111736.
  • Nasrallehzadeh Saravi, H., Safari, R., Naderi, M. J., Makhough, A., Foong, S. Y., Baloei, M., ... & Razeghian, G. R. (2023). Spatial-temporal investigation of water quality and pollution of Sirvan River (Sanandaj-Kurdistan). International Journal of Aquatic Research and Environmental Studies, 3(2), 141-156.
  • Omara, A. E. D., Hafez, E. M., Osman, H. S., Rashwan, E., El-Said, M. A., Alharbi, K., ... & Gowayed, S. M. (2022). Collaborative impact of compost and beneficial rhizobacteria on soil properties, physiological attributes, and productivity of wheat subjected to deficit irrigation in salt affected soil. Plants, 11(7), https://doi.org/10.3390/plants11070877.
  • Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment, 764, https://doi.org/10.1016/j.scitotenv.2020.144164.
  • Syed, A., Sarwar, G., Shah, S. H., & Muhammad, S. (2021). Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops. Communications in Soil Science and Plant Analysis, 52(3), 183-200.
  • Xie, W., Yang, J., Gao, S., Yao, R., & Wang, X. (2022). The effect and influence mechanism of soil salinity on phosphorus availability in coastal salt-affected soils. Water, 14(18), https://doi.org/10.3390/w14182804.
  • Zhu, Z., Jiao, T., & LiInnovative, Z. (2024). Applications of IoT in Smart Home Systems: Enhancing Environmental Monitoring with Integrated Sensor Technologies and MQTT Protocol. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(4), 69-89. https://doi.org/10.58346/JOWUA.2024.I4.006
There are 22 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Vikrant Aadiwal 0009-0003-6580-9206

Kunal Meher This is me 0000-0003-2940-4247

Aravindan Munusamy Kalidhas This is me 0000-0001-9582-7219

Abhishek Kumar Mishra This is me 0000-0002-9594-3559

Publication Date April 1, 2025
Submission Date February 28, 2025
Acceptance Date March 21, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Aadiwal, V., Meher, K., Kalidhas, A. M., Mishra, A. K. (2025). Spatial Modeling of Soil Salinity and Its Impact on Nutrient Availability and Agricultural Productivity. Natural and Engineering Sciences, 10(1), 312-324. https://doi.org/10.28978/nesciences.1648720

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015