Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 1, 479 - 489, 01.04.2025
https://doi.org/10.28978/nesciences.1660356

Abstract

References

  • Ahmad, A., Zamzami, M. A., Ahmad, V., Al-Thawadi, S., Akhtar, M. S., & Khan, M. J. (2023). Bacterial biological factories intended for the desulfurization of petroleum products in refineries. Fermentation, 9(3), 211. https://doi.org/10.3390/fermentation9030211
  • Akram, J., Hussain, M. U., Aslam, A., Akhtar, K., Anwar, M. A., Iqbal, M., ... & Akhtar, N. (2024). Genomic analysis and biodesulfurization potential of a new carbon–sulfur bond cleaving Tsukamurella sp. 3OW. International Microbiology, 27(5), 1429-1444. https://doi.org/10.1007/s10123-024-00484-z.
  • Alkhalili, B. E., Yahya, A., Ibrahim, N., Ganapathy, B., & Thwaini, M. N. (2020). Biodesulfurization of Sour Crude Oil: An Advanced Study. Current Strategies in Biotechnology and Bioresource Technology, 85, 110. https://doi.org/10.9734/bpi/csbbt/v1
  • Almolhis, N. A. A Bayesian-Network Approach for Assessing Security and Process Safety in the Petroleum Industry (2024). Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(4), 335-347. https://doi.org/10.58346/JOWUA.2024.I4.022
  • Awadh, M., Mahmoud, H., Abed, R. M., El Nayal, A. M., Abotalib, N., & Ismail, W. (2020). Diesel-born organosulfur compounds stimulate community re-structuring in a diesel-biodesulfurizing consortium. Biotechnology Reports, 28, e00572. https://doi.org/10.1016/j.btre.2020.e00572
  • Bhavya, K., Reddy, A., Begum, S., Kumaraguru, T., & Anupoju, G. R. (2024). Investigating the biodesulfurization potential of isolated microbial consortia: Impact of sulfide loading, pH and oxidation-reduction potential on sulfur recovery. Biocatalysis and Agricultural Biotechnology, 60, 103302. https://doi.org/10.1016/j.bcab.2024.103302
  • Dinesh, R. (2024) Evaluation of Fuel Consumption and Exhaust Emissions in a Single Cylinder Four-Stroke Diesel Engine Using Biodiesel Derived from Chicken Waste with Additives. Natural and Engineering Sciences, 9(2), 326-334. https://doi.org/10.28978/nesciences.1574462
  • El-Sheshtawy, H. S., Aman, D., &Nassar, H. N. (2022). A novel bioremediation technique for petroleum hydrocarbons by bacterial consortium immobilized on goethite-chitosan nanocomposite. Soil and Sediment Contamination: An International Journal, 31(2), 176-199.
  • Ghara, K., Mohebbi, F., & Rezaei, M. M. (2024) Mechanization impact of improvement of some quality indicators of wastewater in rainbow trout culture dual-purpose farms in Markazi Province of Iran.
  • Glekas, P. D., Martzoukou, O., Mastrodima, M. E., Zarkadoulas, E., Kanakoglou, D. S., Kekos, D., ... & Hatzinikolaou, D. G. (2022). Deciphering the biodesulfurization potential of two novel Rhodococcus isolates from a unique Greek environment. AIMS microbiology, 8(4), 484. https://doi.org/10.3934/microbiol.2022032
  • Hafezieh, M., Seidgar, M., Alizadeh Osalou, Zh., Nekoueifard, A., Ghara, K., Mohebbi, F., & Rezaei, M. M. (2024). Mechanization impact of improvement of some quality indicators of wastewater in rainbow trout culture dualpurpose farms in Markazi Province of Iran. International Journal of Aquatic Research and Environmental Studies, 4(2), 1-17. http://doi.org/10.70102/IJARES/V4I2/1
  • Hasanbeik, N. Y., Pourmadadi, M., Ghadami, A., Yazdian, F., Rahdar, A., & Kyzas, G. Z. (2022). Biodesulfurization of dibenzothiophene by decorating Rhodococcus erythropolis IGTS8 using montmorillonite/graphitic carbon nitride. Catalysts, 12(11), 1450. https://doi.org/10.3390/catal12111450
  • John, B., Rana, N. S., Nijhawan, M., & Sharma, G. (2024). Developing a framework for ecosystem-based fisheries management in India. International Journal of Aquatic Research and Environmental Studies, 4(S1), 64-70. https://doi.org/10.70102/IJARES/V4S1/11
  • Khan, J., Ali, M. I., Jamal, A., Achakzai, J. K., Shirazi, J. H., & Haleem, A. (2023). Assessment of the dibenzothiophene desulfurization potential of indigenously isolated bacterial consortium IQMJ-5: a different approach to safeguard the environment. Archives of Microbiology, 205(3), 95.
  • Khan, J., Ali, M. I., Jamal, A., Huang, Z., Achakzai, J. K., Nasir, N., ... & Qureshi, M. Z. (2022). Optimizing the Metabolic Performance of Mixed Bacterial Culture Towards Dibenzothiophene Desulfurization under the Effect of Varying Nutrient and Environmental Factors. Polish Journal of Environmental Studies, 31(5). https://doi.org/10.15244/pjoes/147650
  • Li, M., Yao, J., Wang, Y., Sunahara, G., Duran, R., Liu, J., ... & Cao, Y. (2024). Contrasting response strategies of sulfate-reducing bacteria in a microbial consortium to As3+ stress under anaerobic and aerobic environments. Journal of Hazardous Materials, 465, 133052. https://doi.org/10.1016/j.jhazmat.2023.133052
  • Mamuad, R. Y., & Choi, A. E. S. (2023). Biodesulfurization processes for the removal of sulfur from diesel oil: a perspective report. Energies, 16(6), 2738. https://doi.org/10.3390/en16062738
  • Maslova, O., Senko, O., Akopyan, A., Lysenko, S., Anisimov, A., & Efremenko, E. (2021). Nanocatalysts for oxidative desulfurization of liquid fuel: Modern solutions and the perspectives of application in hybrid chemical-biocatalytic processes. Catalysts, 11(9), 1131. https://doi.org/10.3390/catal11091131
  • Parveen, S., Akhtar, N., E-kobon, T., Burchmore, R., Hussain, A. I., & Akhtar, K. (2024). Biodesulfurization of organosulfur compounds by a trehalose biosurfactant producing Gordonia sp. isolated from crude oil contaminated soil. World Journal of Microbiology and Biotechnology, 40(3), 103. https://doi.org/10.1007/s11274-024-03899-y
  • Saeed, A. A., Ahmed, G. A., & Al-Sarahi, A. T. (2022). Biodesulfurization of Al-Masila (Hadramout–Yemen) Crude Oil using Pseudomonas aeruginosa. Humanities & Natural Sciences Journal, 3(2), 166-175. https://doi.org/10.53796/hnsj3211
  • Sutarut, P., Cheirsilp, B., & Boonsawang, P. (2023). Biodesulfurization of Consortia Immobilized on Oil Palm Frond Biochar in Biotrickling Filters under Anoxic Conditions. Fermentation, 9(7), 664. https://doi.org/10.3390/fermentation9070664
  • Thanh, N. T. P., Hien, D. T. N., Dung, P. A., & Hai, N. X. (2024). Mobile and Phone Speaker Recognition with IoTs and IAI Robot Control System Applications for Production. International Journal of Advances in Engineering and Emerging Technology, 15(1), 19-23.

Exploring the Potential of Microbial Consortia for Biodesulfurization in Petroleum and Fuel Applications

Year 2025, Volume: 10 Issue: 1, 479 - 489, 01.04.2025
https://doi.org/10.28978/nesciences.1660356

Abstract

The growing environmental concerns regarding sulfur emissions from petroleum and fuel products have driven significant interest in alternative desulfurization methods. Microbial consortia, consisting of diverse microorganisms, present a promising solution for biodesulfurization (BDS) processes in petroleum and fuel applications. This research explores the potential of microbial consortiums for the breakdown of containing sulfur substances, particularly dibenzothiophene (DBT), and a major sulfur component in petroleum and fuel products. Oil-contaminated soil samples were gathered from several petroleum extraction locations. Microbial consortia were isolated using serial dilution techniques on nutrient agar and basal salt media (BSM) supplemented using DBT as the only carbon and sulfur source. The consortia were then tested for DBT degradation using growth monitoring by optical density (OD) and sulfur removal efficiency via Gas Chromatography (GC) and Atomic Absorption Spectroscopy (AAS). The Most Probable Number (MPN) method was employed to estimate the concentration of live bacteria in the samples, based on serial dilutions and incubation. The microbial consortia exhibited improved sulfur removal compared to individual strains, although these strains displayed varying levels of DBT degradation. Various bacterial genera were identified, including Thiobacillus, Bacillus, Sulfobacillus, Rhodococcus, Sphingomonas, Klebsiella, and Geobacillus. Sulfur removal was confirmed through GC and AAS analysis, showing a significant decrease in DBT concentration over time. Growth monitoring using OD620 revealed that the consortium reached an OD of 1.2 after 48 hours, while individual isolates average Thiobacillus, Bacillus, Sulfobacillus, Rhodococcus, Sphingomonas, Klebsiella, and Geobacillus. Sulfur removal was confirmed through GC and AAS analysis, showing a significant decrease of 0.71. This research highlights the effectiveness of microbial consortia in BDS processes, offering substantial implications for improving fuel quality and promoting environmental sustainability.

References

  • Ahmad, A., Zamzami, M. A., Ahmad, V., Al-Thawadi, S., Akhtar, M. S., & Khan, M. J. (2023). Bacterial biological factories intended for the desulfurization of petroleum products in refineries. Fermentation, 9(3), 211. https://doi.org/10.3390/fermentation9030211
  • Akram, J., Hussain, M. U., Aslam, A., Akhtar, K., Anwar, M. A., Iqbal, M., ... & Akhtar, N. (2024). Genomic analysis and biodesulfurization potential of a new carbon–sulfur bond cleaving Tsukamurella sp. 3OW. International Microbiology, 27(5), 1429-1444. https://doi.org/10.1007/s10123-024-00484-z.
  • Alkhalili, B. E., Yahya, A., Ibrahim, N., Ganapathy, B., & Thwaini, M. N. (2020). Biodesulfurization of Sour Crude Oil: An Advanced Study. Current Strategies in Biotechnology and Bioresource Technology, 85, 110. https://doi.org/10.9734/bpi/csbbt/v1
  • Almolhis, N. A. A Bayesian-Network Approach for Assessing Security and Process Safety in the Petroleum Industry (2024). Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(4), 335-347. https://doi.org/10.58346/JOWUA.2024.I4.022
  • Awadh, M., Mahmoud, H., Abed, R. M., El Nayal, A. M., Abotalib, N., & Ismail, W. (2020). Diesel-born organosulfur compounds stimulate community re-structuring in a diesel-biodesulfurizing consortium. Biotechnology Reports, 28, e00572. https://doi.org/10.1016/j.btre.2020.e00572
  • Bhavya, K., Reddy, A., Begum, S., Kumaraguru, T., & Anupoju, G. R. (2024). Investigating the biodesulfurization potential of isolated microbial consortia: Impact of sulfide loading, pH and oxidation-reduction potential on sulfur recovery. Biocatalysis and Agricultural Biotechnology, 60, 103302. https://doi.org/10.1016/j.bcab.2024.103302
  • Dinesh, R. (2024) Evaluation of Fuel Consumption and Exhaust Emissions in a Single Cylinder Four-Stroke Diesel Engine Using Biodiesel Derived from Chicken Waste with Additives. Natural and Engineering Sciences, 9(2), 326-334. https://doi.org/10.28978/nesciences.1574462
  • El-Sheshtawy, H. S., Aman, D., &Nassar, H. N. (2022). A novel bioremediation technique for petroleum hydrocarbons by bacterial consortium immobilized on goethite-chitosan nanocomposite. Soil and Sediment Contamination: An International Journal, 31(2), 176-199.
  • Ghara, K., Mohebbi, F., & Rezaei, M. M. (2024) Mechanization impact of improvement of some quality indicators of wastewater in rainbow trout culture dual-purpose farms in Markazi Province of Iran.
  • Glekas, P. D., Martzoukou, O., Mastrodima, M. E., Zarkadoulas, E., Kanakoglou, D. S., Kekos, D., ... & Hatzinikolaou, D. G. (2022). Deciphering the biodesulfurization potential of two novel Rhodococcus isolates from a unique Greek environment. AIMS microbiology, 8(4), 484. https://doi.org/10.3934/microbiol.2022032
  • Hafezieh, M., Seidgar, M., Alizadeh Osalou, Zh., Nekoueifard, A., Ghara, K., Mohebbi, F., & Rezaei, M. M. (2024). Mechanization impact of improvement of some quality indicators of wastewater in rainbow trout culture dualpurpose farms in Markazi Province of Iran. International Journal of Aquatic Research and Environmental Studies, 4(2), 1-17. http://doi.org/10.70102/IJARES/V4I2/1
  • Hasanbeik, N. Y., Pourmadadi, M., Ghadami, A., Yazdian, F., Rahdar, A., & Kyzas, G. Z. (2022). Biodesulfurization of dibenzothiophene by decorating Rhodococcus erythropolis IGTS8 using montmorillonite/graphitic carbon nitride. Catalysts, 12(11), 1450. https://doi.org/10.3390/catal12111450
  • John, B., Rana, N. S., Nijhawan, M., & Sharma, G. (2024). Developing a framework for ecosystem-based fisheries management in India. International Journal of Aquatic Research and Environmental Studies, 4(S1), 64-70. https://doi.org/10.70102/IJARES/V4S1/11
  • Khan, J., Ali, M. I., Jamal, A., Achakzai, J. K., Shirazi, J. H., & Haleem, A. (2023). Assessment of the dibenzothiophene desulfurization potential of indigenously isolated bacterial consortium IQMJ-5: a different approach to safeguard the environment. Archives of Microbiology, 205(3), 95.
  • Khan, J., Ali, M. I., Jamal, A., Huang, Z., Achakzai, J. K., Nasir, N., ... & Qureshi, M. Z. (2022). Optimizing the Metabolic Performance of Mixed Bacterial Culture Towards Dibenzothiophene Desulfurization under the Effect of Varying Nutrient and Environmental Factors. Polish Journal of Environmental Studies, 31(5). https://doi.org/10.15244/pjoes/147650
  • Li, M., Yao, J., Wang, Y., Sunahara, G., Duran, R., Liu, J., ... & Cao, Y. (2024). Contrasting response strategies of sulfate-reducing bacteria in a microbial consortium to As3+ stress under anaerobic and aerobic environments. Journal of Hazardous Materials, 465, 133052. https://doi.org/10.1016/j.jhazmat.2023.133052
  • Mamuad, R. Y., & Choi, A. E. S. (2023). Biodesulfurization processes for the removal of sulfur from diesel oil: a perspective report. Energies, 16(6), 2738. https://doi.org/10.3390/en16062738
  • Maslova, O., Senko, O., Akopyan, A., Lysenko, S., Anisimov, A., & Efremenko, E. (2021). Nanocatalysts for oxidative desulfurization of liquid fuel: Modern solutions and the perspectives of application in hybrid chemical-biocatalytic processes. Catalysts, 11(9), 1131. https://doi.org/10.3390/catal11091131
  • Parveen, S., Akhtar, N., E-kobon, T., Burchmore, R., Hussain, A. I., & Akhtar, K. (2024). Biodesulfurization of organosulfur compounds by a trehalose biosurfactant producing Gordonia sp. isolated from crude oil contaminated soil. World Journal of Microbiology and Biotechnology, 40(3), 103. https://doi.org/10.1007/s11274-024-03899-y
  • Saeed, A. A., Ahmed, G. A., & Al-Sarahi, A. T. (2022). Biodesulfurization of Al-Masila (Hadramout–Yemen) Crude Oil using Pseudomonas aeruginosa. Humanities & Natural Sciences Journal, 3(2), 166-175. https://doi.org/10.53796/hnsj3211
  • Sutarut, P., Cheirsilp, B., & Boonsawang, P. (2023). Biodesulfurization of Consortia Immobilized on Oil Palm Frond Biochar in Biotrickling Filters under Anoxic Conditions. Fermentation, 9(7), 664. https://doi.org/10.3390/fermentation9070664
  • Thanh, N. T. P., Hien, D. T. N., Dung, P. A., & Hai, N. X. (2024). Mobile and Phone Speaker Recognition with IoTs and IAI Robot Control System Applications for Production. International Journal of Advances in Engineering and Emerging Technology, 15(1), 19-23.
There are 22 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Kunal Thakur 0009-0008-6616-0302

Shashikant Patil This is me 0000-0002-8835-908X

K.n. Raja Praveen This is me 0000-0002-4227-7011

Uma Bhardwaj This is me 0000-0002-6414-9731

Publication Date April 1, 2025
Submission Date March 18, 2025
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Thakur, K., Patil, S., Raja Praveen, K., Bhardwaj, U. (2025). Exploring the Potential of Microbial Consortia for Biodesulfurization in Petroleum and Fuel Applications. Natural and Engineering Sciences, 10(1), 479-489. https://doi.org/10.28978/nesciences.1660356

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015