Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 1, 519 - 528, 01.04.2025
https://doi.org/10.28978/nesciences.1660391

Abstract

References

  • Abdel-Karim, A. H. (2017). Identifying and controlling contamination of date palm tissue cultures. Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications, 165-174. https://doi.org/10.1007/978-1-4939-7156-5_14
  • Abogarra, L. A. M. I. A. A., Eisa, N. A. W. A. L., EL-habbaa, G. E. H. A. D., Darwesh, R. S., & EL-habbak, M. O. H. A. M. E. D. (2022). Superiority of Nano-Silver Nitrate and Nano-Chitosan in Controlling Bacterial Contamination and Promoting Growth of in vitro Date Palm Cultures. Plant Cell Biotechnol. Mol. Biol, 23, 85-104. https://doi.org/10.56557/PCBMB/2022/v23i33-347845
  • Acemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular & Developmental Biology-Plant, 54, 537-544. https://doi.org/10.1007/s11627-018-9915-0
  • Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608-614. https://doi.org/10.1007/s00299-003-0733-3
  • Al-Mayahi, A. M. W. (2022). In vitro propagation and assessment of genetic stability in date palm as affected by chitosan and thidiazuron combinations. Journal of Genetic Engineering and Biotechnology, 20(1), 165. https://doi.org/10.1186/s43141-022-00447-9
  • Al-Saeedi, Ibrahim. 2000. Production of small fruits. Dar Al-Kutub for Printing and Publishing. University of Mosul. Republic of Iraq.
  • Amin, M.M. (2013). Chitosan. Assiut University Journal of Environmental Studies, 38, 59-66.
  • Bayraktar, M., Naziri, E., Akgun, I. H., Karabey, F., Ilhan, E., Akyol, B., ... & Gurel, A. (2016). Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 127, 289-300. https://doi.org/10.1007/s11240-016-1049-7
  • Bibi, A., Ibrar, M., Shalmani, A., & Rehan, T. (2021). 02. A review on recent advances in chitosan applications. Pure and Applied Biology (PAB), 10(4), 1217-1229. https://dx.doi.org/10.19045/bspab.2021.100128
  • Campos, R. B. (2024). The Impact of Digitalization on Credit Risk Management in Microfinance Institutions in Nueva Ecija, Philippines. Indian Journal of Information Sources and Services, 14(3), 145–156. https://doi.org/10.51983/ijiss-2024.14.3.20
  • Charoenwattana, P. I. Y. A. V. A. D. E. E., & Petprapai, U. M. N. O. U. I. (2013). Effects of chitosan and Lotus extracts as growth promoter in Dendrobium orchid. International Journal of Environmental and Rural Development, 4(2), 133-137.
  • Compton, M. E. (2018). Statistical analysis of plant tissue culture data. In Plant Tissue Culture Concepts and Laboratory Exercises (pp. 61-72). Routledge.
  • Dias, A. M. A., Cortez, A. R., Barsan, M. M., Santos, J. B., Brett, C. M. A., & De Sousa, H. C. (2013). Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustainable Chemistry & Engineering, 1(11), 1480-1492. https://doi.org/10.1021/sc4002577
  • Doğdu, S. A., Turan, C., & Depci, T. (2021). Extraction and characterization of chitin and Chitosan from invasive alien swimming crab Charybdis longicollis. Natural and Engineering Sciences, 6(2), 96-101. http://doi.org/10.28978/nesciences.970546
  • Ewhayid, B. M., Ibrahim, M. A., & Abdulzahra, E. M. (2023). Chitosan as a growth stimulator of moringa (Moringa oleifera L.) under in vitro conditions. DYSONA-Applied Science, 4(2), 28-34. https://doi.org/10.30493/das.2023.374878
  • Govindaraju, S., & Arulselvi, P. I. (2018). Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb–Coleus aromaticus Benth (L). Journal of the Saudi Society of Agricultural Sciences, 17(4), 435-444. https://doi.org/10.1016/j.jssas.2016.11.001
  • Husaini, A. M., & Xu, Y. W. (2016). Challenges of climate change to strawberry cultivation: uncertainty and beyond. In Strawberry: growth, development and diseases (pp. 262-287). Wallingford UK: CABI. https://doi.org/10.1079/9781780646633.0262
  • Jayakumar, R., Nagahama, H., Furuike, T., & Tamura, H. (2008). Synthesis of phosphorylated chitosan by novel method and its characterization. International journal of biological macromolecules, 42(4), 335-339. https://doi.org/10.1016/j.ijbiomac.2007.12.011
  • Kanchanapoom, K., Pimolthai, P., & Kanchanapoom, K. (2012). The effect of chitosan on regeneration of lily (Lilium longiflorum Thunb.‘Ester Lily’) from bulb scale explants cultured in vitro. Propagation of Ornamental Plants, 12(2), 127-129.
  • Kandha, L., Kumar, R., & Bindhani, B. K. (2022). Chitosan as a growth promoter and enhance survival rate in an in vitro culture of banana (Musa spp.) cultivar ‘Bantala’. Indian Journal of Agricultural Research, 56(5), 599-606. http://dx.doi.org/10.18805/IJARe.A-5747
  • Kandha, L., Kumar, R., Sethi, S. K., & Bindhani, B. K. (2021). Chitosan enhances growth and survival rate of in vitro-cultured plantlets of banana cultivar “Grand Naine”. Journal of Crop Improvement, 35(6), 848-865. https://doi.org/10.1080/15427528.2021.1889732
  • Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904. https://doi.org/10.3390/polym13060904
  • Krupa-Małkiewicz, M., Jurkiewicz, A., Ochmian, I., & Figiel-Kroczyńska, M. (2022). Effect of chitosan and meta-Topolin in micropropagation of Vaccinium corymbosum. Progress on Chemistry and Application of Chitin and its Derivatives, 27, 154-161.
  • Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate polymers, 64(1), 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
  • Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve-Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez-Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific reports, 7(1), 16813. https://doi.org/10.1038/s41598-017-16874-5
  • Mastuti, R., Batoro, J., & Waluyo, B. (2021, June). Elicitor effect of chitosan on in vitro culture of different explants of physalis accessions from east java. In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020) (pp. 382-386). Atlantis Press. https://doi.org/10.2991/absr.k.210621.064
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3). https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Orlikowska, T., Nowak, K., & Reed, B. (2017). Bacteria in the plant tissue culture environment. Plant Cell, Tissue and Organ Culture (PCTOC), 128, 487-508. https://doi.org/10.1007/s11240-016-1144-9
  • Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M. (2020). Micro-frontends: application of microservices to web front-ends. Journal of Internet Services and Information Security, 10(2), 49-66. http://doi.org/10.22667/JISIS.2020.05.31.049
  • Rokosa, M., & Mikiciuk, M. (2017). In vitro regeneration of Fragraria plants. Acta Scientiarum Polonorum Hortorum Cultus, 16(5), 145-158.
  • Safana, H. S., Ibrahim, M. A., & Abd, A. M. (2022). Impact of chitosan and benzyl adenine on shoot multiplication of kumquat plant (Citrus japonica Thumb.) in vitro. International Journal of Agricultural and Statistical Sciences, 18(1), 359-365.‏ https://connectjournals.com/03899.2022.18.359
  • VSN International. (2009). GenStat for Windows 12th Edition. VSN International, Hemel Hempstead, UK.
  • Xie, X., & Fang, Z. (2024). Multi-Modal Emotional Understanding in AI Virtual Characters: Integrating Micro-Expression-Driven Feedback within Context-Aware Facial Micro-Expression Processing Systems. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(3), 474-500. https://doi.org/10.58346/JOWUA.2024.I3.031
  • Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35, 569-588. https://doi.org/10.1007/s13593-014-0252-3
  • Youssef, S. M. (2016). Chitosan and thidiazuron improve regeneration efficiency of strawberry (Fragaria x ananassa Duch.) cv. Festival from different explant types. The Middle East Journal, 5(4), 856-867.‏

Evaluation of Chitosan-Enriched Medium in Improving Strawberry Micropropagation

Year 2025, Volume: 10 Issue: 1, 519 - 528, 01.04.2025
https://doi.org/10.28978/nesciences.1660391

Abstract

The study focused on the possibility of using chitosan in the culture medium for propagating strawberry plants by tissue culture while ensuring reduced culture contamination and increased plantlets growth. The growing tip of the strawberry plant Ruby Gem were cut, superficially sterilized and then planted in the MS medium treated with different concentrations of chitosan (0, 5, 10, 15 mg L-1). The results showed that adding chitosan to the growth medium in the stage of vegetative branches formation was effective in reducing contamination to 10%, increasing the percentage of open buds by 100%, and the average number of branches to 2.75 branches, which increased with increasing the concentration to 10 mg L-1. When it came to branch length, there was no change between the normal medium and the medium that had chitosan added to it. But the amount of stems, leaves, fresh weight, and dry weight were very different between the two media. This was because the amount of chitosan changed these things. The amount of chitosan that was 10 mg L-1 had the most branches, the freshest weight, and the least dry weight. The average was 6.66 branches, 3.96 g of fresh weight, and 0.30 g of dry weight. The group that got 5 mg L-1 had the most leaves, with an average of 5.33 a branch. The best rate was seen in the treatment that had the fewest leaves—2.66 per branch. Put the branch in the medium that had 15 mg L-1 of chitosan added to it. The results showed that supplementing the nutrient medium with different concentrations of chitosan significantly affected the rooting percentage of vegetative branches, the average number of roots and root length with significant differences among the concentrations used. The chitosan at 10 mg L-1 resulted in significantly higher rates of rooting percentage (80%), the number of roots (8.10 root plantlet-1 and the root length (10.20 cm), respectively.

References

  • Abdel-Karim, A. H. (2017). Identifying and controlling contamination of date palm tissue cultures. Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications, 165-174. https://doi.org/10.1007/978-1-4939-7156-5_14
  • Abogarra, L. A. M. I. A. A., Eisa, N. A. W. A. L., EL-habbaa, G. E. H. A. D., Darwesh, R. S., & EL-habbak, M. O. H. A. M. E. D. (2022). Superiority of Nano-Silver Nitrate and Nano-Chitosan in Controlling Bacterial Contamination and Promoting Growth of in vitro Date Palm Cultures. Plant Cell Biotechnol. Mol. Biol, 23, 85-104. https://doi.org/10.56557/PCBMB/2022/v23i33-347845
  • Acemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular & Developmental Biology-Plant, 54, 537-544. https://doi.org/10.1007/s11627-018-9915-0
  • Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608-614. https://doi.org/10.1007/s00299-003-0733-3
  • Al-Mayahi, A. M. W. (2022). In vitro propagation and assessment of genetic stability in date palm as affected by chitosan and thidiazuron combinations. Journal of Genetic Engineering and Biotechnology, 20(1), 165. https://doi.org/10.1186/s43141-022-00447-9
  • Al-Saeedi, Ibrahim. 2000. Production of small fruits. Dar Al-Kutub for Printing and Publishing. University of Mosul. Republic of Iraq.
  • Amin, M.M. (2013). Chitosan. Assiut University Journal of Environmental Studies, 38, 59-66.
  • Bayraktar, M., Naziri, E., Akgun, I. H., Karabey, F., Ilhan, E., Akyol, B., ... & Gurel, A. (2016). Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue and Organ Culture (PCTOC), 127, 289-300. https://doi.org/10.1007/s11240-016-1049-7
  • Bibi, A., Ibrar, M., Shalmani, A., & Rehan, T. (2021). 02. A review on recent advances in chitosan applications. Pure and Applied Biology (PAB), 10(4), 1217-1229. https://dx.doi.org/10.19045/bspab.2021.100128
  • Campos, R. B. (2024). The Impact of Digitalization on Credit Risk Management in Microfinance Institutions in Nueva Ecija, Philippines. Indian Journal of Information Sources and Services, 14(3), 145–156. https://doi.org/10.51983/ijiss-2024.14.3.20
  • Charoenwattana, P. I. Y. A. V. A. D. E. E., & Petprapai, U. M. N. O. U. I. (2013). Effects of chitosan and Lotus extracts as growth promoter in Dendrobium orchid. International Journal of Environmental and Rural Development, 4(2), 133-137.
  • Compton, M. E. (2018). Statistical analysis of plant tissue culture data. In Plant Tissue Culture Concepts and Laboratory Exercises (pp. 61-72). Routledge.
  • Dias, A. M. A., Cortez, A. R., Barsan, M. M., Santos, J. B., Brett, C. M. A., & De Sousa, H. C. (2013). Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustainable Chemistry & Engineering, 1(11), 1480-1492. https://doi.org/10.1021/sc4002577
  • Doğdu, S. A., Turan, C., & Depci, T. (2021). Extraction and characterization of chitin and Chitosan from invasive alien swimming crab Charybdis longicollis. Natural and Engineering Sciences, 6(2), 96-101. http://doi.org/10.28978/nesciences.970546
  • Ewhayid, B. M., Ibrahim, M. A., & Abdulzahra, E. M. (2023). Chitosan as a growth stimulator of moringa (Moringa oleifera L.) under in vitro conditions. DYSONA-Applied Science, 4(2), 28-34. https://doi.org/10.30493/das.2023.374878
  • Govindaraju, S., & Arulselvi, P. I. (2018). Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb–Coleus aromaticus Benth (L). Journal of the Saudi Society of Agricultural Sciences, 17(4), 435-444. https://doi.org/10.1016/j.jssas.2016.11.001
  • Husaini, A. M., & Xu, Y. W. (2016). Challenges of climate change to strawberry cultivation: uncertainty and beyond. In Strawberry: growth, development and diseases (pp. 262-287). Wallingford UK: CABI. https://doi.org/10.1079/9781780646633.0262
  • Jayakumar, R., Nagahama, H., Furuike, T., & Tamura, H. (2008). Synthesis of phosphorylated chitosan by novel method and its characterization. International journal of biological macromolecules, 42(4), 335-339. https://doi.org/10.1016/j.ijbiomac.2007.12.011
  • Kanchanapoom, K., Pimolthai, P., & Kanchanapoom, K. (2012). The effect of chitosan on regeneration of lily (Lilium longiflorum Thunb.‘Ester Lily’) from bulb scale explants cultured in vitro. Propagation of Ornamental Plants, 12(2), 127-129.
  • Kandha, L., Kumar, R., & Bindhani, B. K. (2022). Chitosan as a growth promoter and enhance survival rate in an in vitro culture of banana (Musa spp.) cultivar ‘Bantala’. Indian Journal of Agricultural Research, 56(5), 599-606. http://dx.doi.org/10.18805/IJARe.A-5747
  • Kandha, L., Kumar, R., Sethi, S. K., & Bindhani, B. K. (2021). Chitosan enhances growth and survival rate of in vitro-cultured plantlets of banana cultivar “Grand Naine”. Journal of Crop Improvement, 35(6), 848-865. https://doi.org/10.1080/15427528.2021.1889732
  • Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904. https://doi.org/10.3390/polym13060904
  • Krupa-Małkiewicz, M., Jurkiewicz, A., Ochmian, I., & Figiel-Kroczyńska, M. (2022). Effect of chitosan and meta-Topolin in micropropagation of Vaccinium corymbosum. Progress on Chemistry and Application of Chitin and its Derivatives, 27, 154-161.
  • Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate polymers, 64(1), 60-65. https://doi.org/10.1016/j.carbpol.2005.10.028
  • Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve-Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez-Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific reports, 7(1), 16813. https://doi.org/10.1038/s41598-017-16874-5
  • Mastuti, R., Batoro, J., & Waluyo, B. (2021, June). Elicitor effect of chitosan on in vitro culture of different explants of physalis accessions from east java. In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020) (pp. 382-386). Atlantis Press. https://doi.org/10.2991/absr.k.210621.064
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3). https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Orlikowska, T., Nowak, K., & Reed, B. (2017). Bacteria in the plant tissue culture environment. Plant Cell, Tissue and Organ Culture (PCTOC), 128, 487-508. https://doi.org/10.1007/s11240-016-1144-9
  • Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M. (2020). Micro-frontends: application of microservices to web front-ends. Journal of Internet Services and Information Security, 10(2), 49-66. http://doi.org/10.22667/JISIS.2020.05.31.049
  • Rokosa, M., & Mikiciuk, M. (2017). In vitro regeneration of Fragraria plants. Acta Scientiarum Polonorum Hortorum Cultus, 16(5), 145-158.
  • Safana, H. S., Ibrahim, M. A., & Abd, A. M. (2022). Impact of chitosan and benzyl adenine on shoot multiplication of kumquat plant (Citrus japonica Thumb.) in vitro. International Journal of Agricultural and Statistical Sciences, 18(1), 359-365.‏ https://connectjournals.com/03899.2022.18.359
  • VSN International. (2009). GenStat for Windows 12th Edition. VSN International, Hemel Hempstead, UK.
  • Xie, X., & Fang, Z. (2024). Multi-Modal Emotional Understanding in AI Virtual Characters: Integrating Micro-Expression-Driven Feedback within Context-Aware Facial Micro-Expression Processing Systems. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(3), 474-500. https://doi.org/10.58346/JOWUA.2024.I3.031
  • Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 35, 569-588. https://doi.org/10.1007/s13593-014-0252-3
  • Youssef, S. M. (2016). Chitosan and thidiazuron improve regeneration efficiency of strawberry (Fragaria x ananassa Duch.) cv. Festival from different explant types. The Middle East Journal, 5(4), 856-867.‏
There are 35 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Marwa H M Ubaid 0009-0007-0893-4616

Muslim A A Abdulhussein This is me 0000-0002-9813-0764

Publication Date April 1, 2025
Submission Date March 18, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA H M Ubaid, M., & A A Abdulhussein, M. (2025). Evaluation of Chitosan-Enriched Medium in Improving Strawberry Micropropagation. Natural and Engineering Sciences, 10(1), 519-528. https://doi.org/10.28978/nesciences.1660391

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015