Research Article
BibTex RIS Cite

A Virtual Manipulative To Support Rural Students In Developing Spatial Skills In Online Distance Education: Isometric Drawing Tool

Year 2023, Volume: 5 Issue: Özel Sayı, 153 - 190, 29.10.2023

Abstract

The purpose of this study is to investigate the alterations in rural students' spatial skills when engaging in activities that necessitate the use of isometric drawing tool within the context of online distance education. This study was conducted to investigate the spatial skills of five 7th-grade students from a rural secondary school. Data for this research included pre- and post-interviews, activity papers, and homeworks completed by the students. The qualitative descriptive analyses were employed to determine the impact of the implementation on students' spatial abilities. The results indicated that utilizing an isometric drawing tool during online distance education effectively improved rural students' spatial skills. Overall, students expressed positive opinions about the use of virtual manipulatives. Based on the findings of this study, we recommend that educators consider incorporating isometric drawing tools and virtual manipulatives into their online mathematics teaching to enhance students' spatial skills.

References

  • Allen, C. (2007). An action-based research study on how using manipulatives will increase students’ achievement in mathematics (Report No. ED499956). Institute of Education Sciences. https://eric.ed.gov/?id=ED499956
  • Almarashdi, H., & Jarrah, A. M. (2021). Mathematics distance learning amid the COVID-19 pandemic in the UAE: High school students' perspectives. International Journal of Learning, Teaching and Educational Research, 20(1), 292-307. https://doi.org/10.26803/ijlter.20.1.16
  • Almuraqab, N. A. S. (2020). Shall Universities at The Use Continue Distance Learning After the Covid-19 Pandemic? Revealing Students’ perspective. Social Science Research Network, 11(5), 226-233. https://doi.org/10.34218/ijaret.11.5.2020.024
  • Alshehri, S. (2017). The comparison of Physical/Virtual manipulative on fifth-grade students' understanding of adding fractions [Unpublished doctoral dissertation]. University of Cincinnati.
  • Amin, R., & Li, K. (2010). Should graduate mathematics courses be taught fully online. Electronic Journal of Mathematics & Technology, 4(1), 47-56.
  • Astri, L. Y. (2017). Barrier factors that influence satisfaction of e-learning: A literature study. Advanced Science Letters, 23(4), 3767-3771. https://doi.org/10.1166/asl.2017.9007
  • Baki, A., & Çakıroğlu, Ü. (2010). Learning objects in high school mathematics classrooms: Implementation and evaluation. Computers & Education, 55(4), 1459-1469. https://doi.org/10.1016/j.compedu.2010.06.009
  • Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for research in mathematics education, 21(1), 47-60. https://doi.org/10.5951/jresematheduc.21.1.0047
  • Battista, M. T., Wheatley, G. W., & Talsma, G. (1982). The importance of spatial visualization and formal reasoning for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13(4), 332-340.
  • Bozkurt, A., & Sharma, R. C. (2020). Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian Journal of Distance Education, 15(1), 1-11. https://doi.org/10.5281/zenodo.3778083
  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
  • Durmuş, S., & Karakırık, E. (2006). Virtual manipulatives in mathematics education: A theoretical framework. Turkish Online Journal of Educational Technology - TOJET, 5(1), 1-7.
  • Ergün, M., & Arık, B. M. (2020). Education monitoring report 2020: Students and education access. Istanbul: Education Reform Initiative.
  • Fedele, F., & Li, K. (2008). Reasoning and problem solving: An assessment on two general education courses. University of West Florida.
  • Fennema, E., & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization and affective factors. American educational research journal, 14(1), 51-71. https://doi.org/10.3102/00028312014001051
  • Fraenkel, R. J., & Wallen, E. N. (2009). How to Design and Evaluate Research in Education (7th ed.). San Francisco: McGraw-Hills.
  • Fritz, A., Haase, V. G., & Räsänen, P. (2019). Introduction. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International Handbook of Mathematical Learning Difficulties (pp. 1-6). Springer. https://doi.org/10.1007/978-3-319-97148-3_1 Goodrich Andrade, H. (2001, April 17). The effects of instructional rubrics on learning to write. Current Issues in Education, 4(4), 1-21. http://cie.ed.asu.edu/volume4/number4/
  • Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8(3), 211-215. https://doi.org/10.5951/jresematheduc.8.3.0211
  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689. https://doi.org/10.1037/0022-0663.91.4.684
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001
  • Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. https://doi.org/10.1016/j.compedu.2020.103897
  • Kay, R. (2014). Exploring the use of web-based learning tools in secondary school class- rooms. Interactive Learning Environments, 22(1), 67-83. https://doi.org/10.1080/10494820.2011.641675
  • Kilit, B., & Güner, P. (2021). Matematik derslerinde web tabanlı uzaktan eğitime ilişkin matematik öğretmenlerinin görüşleri. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 85-102. https://doi.org/10.18506/anemon.803167
  • Kurtulus, A., & Yolcu, B. (2013). A study on sixth-grade turkish students' spatial visualization ability. The Mathematics Educator, 22(2), 82-117.
  • Liedtke, W. W. (1995). Developing spatial abilities the early grades. Teaching Children Mathematics, 2(1), 12-18. https://doi.org/10.5951/TCM.2.1.0012
  • Lowrie, T., & Jorgensen, R. (2012). Teaching mathematics remotely: Changed practices in distance education. Mathematics Education Research Journal, 24(3), 371-383. https://doi.org/10.1007/s13394-011-0031-2
  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students' mathematics performance. The British journal of educational psychology, 87(2), 170–186. https://doi.org/10.1111/bjep.12142
  • Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Cognition and Development, 20(5), 729-751. https://doi.org/10.1080/15248372.2019.1653298
  • McWhinnie, H. J. (1994). Art students and their educational needs. Unpublished research report presented at the NAEA Conference, Baltimore, MD.
  • Mix, K. S., Levine, S. C., Cheng, Y., Young, C., Hambrick, D. Z., Ping, R., & Konstantopolous, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145, 1206–1227. https://doi.org/10.1037/xge0000182
  • Moyer, P. S., Bolyard, J.J., & Spikell, M.A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372-377.
  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35–50. https://doi.org/10.4018/jvple.2013070103
  • Mutluoğlu, A., & Erdoğan, A. (2021). The effect of virtual manipulatives developed for 6th grade mathematics lesson on students' achievement and attitudes towards geometry. International Journal of Educational Studies in Mathematics, 8(3), 195-218.
  • Olkun, S., & Altun, A. (2003). İlköğretim öğrencilerinin bilgisayar deneyimleri ile uzamsal düşünme ve geometri başarıları arasındaki ilişki. The Turkish Online Journal of Educational Technology, 2(4), 86-91.
  • Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516. https://doi.org/10.1002/tea.3660210508
  • Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229-240. https://doi.org/10.1002/tea.3660240304
  • Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a Web-based Virtual Environment (WbVE). Automation in construction, 14(6), 707-715.
  • Samsudin, K., & Mohd Eshaq, A. R. (2011). Enhancing spatial skill through multimedia technology: A focus on animation and interaction. In EDULEARN11 Proceedings (pp. 1723-1730). 3rd International Conference on Education and New Learning Technologies. Barcelona, Spain. ISBN: 978-84-615-0441-1
  • Steen, K., Brooks, D., & Lyon, T. (2006). The impact of virtual manipulatives on first grade geometry instruction and learning. Journal of Computers in Mathematics and Science Teaching, 25(4), 373–391.
  • Swan, P., & Marshall, L. (2010). Revisiting mathematics manipulative materials. Australian Primary Mathematics Classroom, 15(2), 13–19.
  • Telg, R. W. (1996). Instructional design considerations for teaching international audiences via satellite. International Journal of Instructional Media, 23(3), 209-217.
  • Tversky, B. (2011). Spatial thought, social thought. In T. W. Schubert & A. Maass (Eds.), Spatial Dimensions of Social Thought (pp. 17-37). Hubert & Co.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of educational Psychology, 101(4), 817-835.
  • Yaman, H., & Şahin, T. (2014). Somut ve sanal manipülatif destekli geometri öğretiminin 5. Sınıf öğrencilerinin geometrik yapıları inşa etme ve çizmedeki başarılarına etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 202 - 220.
  • Yıldız, B., & Tüzün, H. (2011). Üç-boyutlu sanal ortam ve somut materyal kullanımının uzamsal yeteneğe etkileri̇. Hacettepe Egitim Dergisi, 41, 498–508

Çevrimiçi Uzaktan Eğitimde Kırsal Bölge Öğrencilerinin Uzamsal Becerilerini Geliştirmek İçin Sanal Manipülatif: İzometrik Çizim Aracı

Year 2023, Volume: 5 Issue: Özel Sayı, 153 - 190, 29.10.2023

Abstract

Bu çalışmanın amacı çevrimiçi uzaktan eğitimde izometrik çizim aracı kullanımını gerektiren etkinliklerde öğrencilerin uzamsal becerilerinde meydana gelen değişiklikleri incelemektir. Araştırmaya kırsal bölgede yer alan bir ortaokulda yedinci sınıfta okuyan beş öğrenci katılmıştır. Araştırmanın verileri ön ve son görüşmeler, dersler sırasında kullanılan etkinlik kağıtları ve dersler sonrasında verilen ödevler yardımıyla toplanmıştır. Uygulamanın, öğrencilerin uzamsal becerilerinde meydana getirdiği değişimi belirlemek için nitel betimsel analiz kullanılmıştır. Araştırmanın bulguları, çevrimiçi uzaktan eğitim sırasında bir izometrik çizim aracı kullanmanın, öğrencilerin uzamsal becerilerini etkili bir şekilde geliştirdiğini göstermiştir. Genel olarak, öğrenciler sanal manipülatiflerin kullanımı hakkında olumlu görüşler ifade etmişlerdir. Bu çalışmanın bulgularına dayanarak, matematik eğitimcilerinin öğrencilerin uzamsal becerilerini geliştirmek için izometrik çizim araçları gibi sanal manipülatifleri çevrimiçi matematik öğretimlerine dahil etmeleri önerilmektedir.

References

  • Allen, C. (2007). An action-based research study on how using manipulatives will increase students’ achievement in mathematics (Report No. ED499956). Institute of Education Sciences. https://eric.ed.gov/?id=ED499956
  • Almarashdi, H., & Jarrah, A. M. (2021). Mathematics distance learning amid the COVID-19 pandemic in the UAE: High school students' perspectives. International Journal of Learning, Teaching and Educational Research, 20(1), 292-307. https://doi.org/10.26803/ijlter.20.1.16
  • Almuraqab, N. A. S. (2020). Shall Universities at The Use Continue Distance Learning After the Covid-19 Pandemic? Revealing Students’ perspective. Social Science Research Network, 11(5), 226-233. https://doi.org/10.34218/ijaret.11.5.2020.024
  • Alshehri, S. (2017). The comparison of Physical/Virtual manipulative on fifth-grade students' understanding of adding fractions [Unpublished doctoral dissertation]. University of Cincinnati.
  • Amin, R., & Li, K. (2010). Should graduate mathematics courses be taught fully online. Electronic Journal of Mathematics & Technology, 4(1), 47-56.
  • Astri, L. Y. (2017). Barrier factors that influence satisfaction of e-learning: A literature study. Advanced Science Letters, 23(4), 3767-3771. https://doi.org/10.1166/asl.2017.9007
  • Baki, A., & Çakıroğlu, Ü. (2010). Learning objects in high school mathematics classrooms: Implementation and evaluation. Computers & Education, 55(4), 1459-1469. https://doi.org/10.1016/j.compedu.2010.06.009
  • Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for research in mathematics education, 21(1), 47-60. https://doi.org/10.5951/jresematheduc.21.1.0047
  • Battista, M. T., Wheatley, G. W., & Talsma, G. (1982). The importance of spatial visualization and formal reasoning for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13(4), 332-340.
  • Bozkurt, A., & Sharma, R. C. (2020). Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian Journal of Distance Education, 15(1), 1-11. https://doi.org/10.5281/zenodo.3778083
  • Cheng, Y. L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
  • Durmuş, S., & Karakırık, E. (2006). Virtual manipulatives in mathematics education: A theoretical framework. Turkish Online Journal of Educational Technology - TOJET, 5(1), 1-7.
  • Ergün, M., & Arık, B. M. (2020). Education monitoring report 2020: Students and education access. Istanbul: Education Reform Initiative.
  • Fedele, F., & Li, K. (2008). Reasoning and problem solving: An assessment on two general education courses. University of West Florida.
  • Fennema, E., & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization and affective factors. American educational research journal, 14(1), 51-71. https://doi.org/10.3102/00028312014001051
  • Fraenkel, R. J., & Wallen, E. N. (2009). How to Design and Evaluate Research in Education (7th ed.). San Francisco: McGraw-Hills.
  • Fritz, A., Haase, V. G., & Räsänen, P. (2019). Introduction. In A. Fritz, V. G. Haase, & P. Räsänen (Eds.), International Handbook of Mathematical Learning Difficulties (pp. 1-6). Springer. https://doi.org/10.1007/978-3-319-97148-3_1 Goodrich Andrade, H. (2001, April 17). The effects of instructional rubrics on learning to write. Current Issues in Education, 4(4), 1-21. http://cie.ed.asu.edu/volume4/number4/
  • Guay, R. B., & McDaniel, E. D. (1977). The relationship between mathematics achievement and spatial abilities among elementary school children. Journal for Research in Mathematics Education, 8(3), 211-215. https://doi.org/10.5951/jresematheduc.8.3.0211
  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual–spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689. https://doi.org/10.1037/0022-0663.91.4.684
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001
  • Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. https://doi.org/10.1016/j.compedu.2020.103897
  • Kay, R. (2014). Exploring the use of web-based learning tools in secondary school class- rooms. Interactive Learning Environments, 22(1), 67-83. https://doi.org/10.1080/10494820.2011.641675
  • Kilit, B., & Güner, P. (2021). Matematik derslerinde web tabanlı uzaktan eğitime ilişkin matematik öğretmenlerinin görüşleri. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 9(1), 85-102. https://doi.org/10.18506/anemon.803167
  • Kurtulus, A., & Yolcu, B. (2013). A study on sixth-grade turkish students' spatial visualization ability. The Mathematics Educator, 22(2), 82-117.
  • Liedtke, W. W. (1995). Developing spatial abilities the early grades. Teaching Children Mathematics, 2(1), 12-18. https://doi.org/10.5951/TCM.2.1.0012
  • Lowrie, T., & Jorgensen, R. (2012). Teaching mathematics remotely: Changed practices in distance education. Mathematics Education Research Journal, 24(3), 371-383. https://doi.org/10.1007/s13394-011-0031-2
  • Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students' mathematics performance. The British journal of educational psychology, 87(2), 170–186. https://doi.org/10.1111/bjep.12142
  • Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Cognition and Development, 20(5), 729-751. https://doi.org/10.1080/15248372.2019.1653298
  • McWhinnie, H. J. (1994). Art students and their educational needs. Unpublished research report presented at the NAEA Conference, Baltimore, MD.
  • Mix, K. S., Levine, S. C., Cheng, Y., Young, C., Hambrick, D. Z., Ping, R., & Konstantopolous, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145, 1206–1227. https://doi.org/10.1037/xge0000182
  • Moyer, P. S., Bolyard, J.J., & Spikell, M.A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372-377.
  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35–50. https://doi.org/10.4018/jvple.2013070103
  • Mutluoğlu, A., & Erdoğan, A. (2021). The effect of virtual manipulatives developed for 6th grade mathematics lesson on students' achievement and attitudes towards geometry. International Journal of Educational Studies in Mathematics, 8(3), 195-218.
  • Olkun, S., & Altun, A. (2003). İlköğretim öğrencilerinin bilgisayar deneyimleri ile uzamsal düşünme ve geometri başarıları arasındaki ilişki. The Turkish Online Journal of Educational Technology, 2(4), 86-91.
  • Pallrand, G. J., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516. https://doi.org/10.1002/tea.3660210508
  • Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229-240. https://doi.org/10.1002/tea.3660240304
  • Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a Web-based Virtual Environment (WbVE). Automation in construction, 14(6), 707-715.
  • Samsudin, K., & Mohd Eshaq, A. R. (2011). Enhancing spatial skill through multimedia technology: A focus on animation and interaction. In EDULEARN11 Proceedings (pp. 1723-1730). 3rd International Conference on Education and New Learning Technologies. Barcelona, Spain. ISBN: 978-84-615-0441-1
  • Steen, K., Brooks, D., & Lyon, T. (2006). The impact of virtual manipulatives on first grade geometry instruction and learning. Journal of Computers in Mathematics and Science Teaching, 25(4), 373–391.
  • Swan, P., & Marshall, L. (2010). Revisiting mathematics manipulative materials. Australian Primary Mathematics Classroom, 15(2), 13–19.
  • Telg, R. W. (1996). Instructional design considerations for teaching international audiences via satellite. International Journal of Instructional Media, 23(3), 209-217.
  • Tversky, B. (2011). Spatial thought, social thought. In T. W. Schubert & A. Maass (Eds.), Spatial Dimensions of Social Thought (pp. 17-37). Hubert & Co.
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of educational Psychology, 101(4), 817-835.
  • Yaman, H., & Şahin, T. (2014). Somut ve sanal manipülatif destekli geometri öğretiminin 5. Sınıf öğrencilerinin geometrik yapıları inşa etme ve çizmedeki başarılarına etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 202 - 220.
  • Yıldız, B., & Tüzün, H. (2011). Üç-boyutlu sanal ortam ve somut materyal kullanımının uzamsal yeteneğe etkileri̇. Hacettepe Egitim Dergisi, 41, 498–508
There are 45 citations in total.

Details

Primary Language English
Subjects Other Fields of Education (Other)
Journal Section Articles
Authors

Deniz Eroğlu 0000-0001-7863-5055

Early Pub Date October 27, 2023
Publication Date October 29, 2023
Submission Date August 15, 2023
Acceptance Date October 23, 2023
Published in Issue Year 2023 Volume: 5 Issue: Özel Sayı

Cite

APA Eroğlu, D. (2023). A Virtual Manipulative To Support Rural Students In Developing Spatial Skills In Online Distance Education: Isometric Drawing Tool. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 5(Özel Sayı), 153-190.