Research Article
BibTex RIS Cite

Presence of Some Antibiotic (Metronidazole, Ornidazole) and Antifungal (Fluconazole) Pharmaceuticals in Urban Wastewater and Risk Assessment

Year 2024, , 225 - 236, 31.08.2024
https://doi.org/10.47112/neufmbd.2024.45

Abstract

In this study, metronidazole and ornidazole compounds, which are antibiotic pharmaceuticals, and fluconazole compounds, which are antifungal pharmaceuticals, were investigated in wastewater samples taken from the Konya city sewage system and Konya Urban Wastewater Treatment Plant. Ecological risk and risk against the formation of antimicrobial pharmaceutical resistance were calculated with the concentrations in the wastewater treatment plant effluent and PNEC values. In samples taken from the sewage system, metronidazole compound was detected at concentrations dl-2234 ng/L, ornidazole compound was detected at concentrations dl-91.84 ng/L, and fluconazole compound was detected at concentrations dl-13.76 ng/L. The metronidazole was the most frequently detected pharmaceutical compound. Pharmaceuticals in the wastewater treatment plant were detected as dl-16.63 ng/L in the influent wastewater and 34.58-95.35 ng/L in the effluent wastewater. It has been determined that pharmaceuticals pose insignificant risk to the receiving environment, and they pose a medium risk against the formation of antimicrobial pharmaceutical resistance. Especially in 2019, pharmaceutical consumption increased worldwide with the pandemic. After consumption, pharmaceuticals are excreted from the body in their parent form or as transformation products. The main pharmaceutical sources in wastewater are formed by excretion from the human body. The sale of antibiotics without a prescription has been banned in our country since 2013. Antifungal drugs can be obtained with or without a prescription. Unconscious consumption of pharmaceuticals should be prevented, and especially in points where pharmaceutical consumption is high, such as hospitals and health centers, wastewater should be discharged to the sewer after pre-treatment.

References

  • H.A. Assress, H. Nyoni, B. B. Mamba, T.A.M. Msagati, Occurrence and risk assessment of azole antifungal drugs in water and Wastewater, Ecotoxicology and Environmental Safety. 187 (2020), 109868. doi: 10.1016/j.ecoenv.2019.109868.
  • S.K. Ram, H., Panidepu, V. Cheernam, R.D. Tyagi, Pharmaceutical metabolites and their by-products in hospital wastewater, Current Developments in Biotechnology and Bioengineering. (2020), 43–78. doi:10.1016/b978-0-12-819722-6.00002-x.
  • F. Bahadır, F.S. Balık, H.S. Yalçınkaya, The impact of covid-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. https://doi.org/10.47112/neufmbd.2023.17.
  • M. Chen, Y. Hong, X. Jin, C. Guo, X. Zhao, N. Liu, H. Lu, Y. Liu, J. Xu, Ranking the risks of eighty pharmaceuticals in surface water of a megacity: A multilevel optimization strategy, Science of The Total Environment. 878 (2023), 163184. doi: 10.1016/j.scitotenv.2023.163184.
  • M. Biel-Maeso, R. M. Baena-Nogueras, C. Corada-Fernández, P. A. Lara-Martín, Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain), Science of The Total Environment. 612 (2018), 649-659. doi: 10.1016/j.scitotenv.2017.08.279.
  • S. Aydin, M. E. Aydin, A. Ulvi, H. Kilic, Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment, Environmental Science and Pollution Research. (2019), 26:544–558. doi.org/10.1007/s11356-018-3563-0.
  • J.L. Santos, I. Aparicio, M. Callejon, E. Alonso, Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain), Journal of Hazardous Materials. 164 (2009), 1509-1516. doi: 10.1016/j.jhazmat.2008.09.073.
  • S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, E. Zuccato, Removal of pharmaceuticals in sewage treatment plants in Italy, Environmental Science & Technology. 40 (2006), 357-363. doi: 10.1021/es050991m.
  • R. Davarnejad, Z. Rostami Hassanvand, S. Mansoori, J. F. Kennedy, Metronidazole elimination from wastewater through photo-Fenton process using green-synthesized alginate-based hydrogel coated bimetallic iron copper nanocomposite beads as a reusable heterogeneous catalyst, Bioresource Technology Reports. 18 (2022), 101068. doi: 10.1016/j.biteb.2022.101068.
  • E. Asgari, A. Sheikhmohammadi, J. Yeganeh, Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies, International Journal of Biological Macromolecules.164 (2020), 694–706. doi: 10.1016/j.ijbiomac.2020.07.188.
  • M. Sánchez-Polo, J. Rivera-Utrilla, G. Prados-Joya, R. Ocampo-Pérez, Metronidazole photodegradation in aqueous solution by using photosensitizers and hydrogen peroxide, Journal of Chemical Technology & Biotechnology. 87 (8) (2012), 1202–1208. doi: 10.1002/jctb.3750.
  • Y. Pan, X. Li, K. Fu, H. Deng, J. Shi, Degradation of metronidazole by UV/ chlorine treatment: efficiency, mechanism, pathways and DBPs formation, Chemosphere. 224, (2019), 228–236. doi: 10.1016/j.chemosphere.2019.02.081.
  • R. Zhou, F. Liu, X. Du, C. Zhang, C. Yang, N.-A. Offiong, Y. Bi, W. Zeng, H. Ren, Removal of metronidazole from wastewater by electrocoagulation with chloride ions electrolyte: The role of reactive chlorine species and process optimization, Separation and Purification Technology. 290, (2022), 100799. doi: 10.1016/j.seppur.2022.120799.
  • F. Tamtam, F. Mercier, B. Le Bot, J. Eurin, Q. Tuc Dinh, M. Clément, M.Chevreuil, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, Science of The Total Environment. 393 (2008), 84-95. doi: 10.1016/j.scitotenv.2007.12.009.
  • J. Zeng, S. Xu, K. Lin, S. Yao, B.Yang, Z. Peng, T. Hao, X. Yu, T. Zhu, F. Jiang, J. Sun, Long-term stable and efficient degradation of ornidazole with minimized by-product formation by a biological sulfidogenic process based on elemental sulfur, Water Research. 249 (2024), 120940. doi: 10.1016/j.watres.2023.120940.
  • M. Wroński, J. Trawiński, R. Skibiński, Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges, Journal of Hazardous Materials. 465 (2024), 133167. doi: 10.1016/j.jhazmat.2023.133167.
  • ChemSpider, Search and Share Chemistry, (2023). https://www.chemspider.com/. (erişim 10 Aralık 203).
  • PubChem, National Library of Medicine, (2023). https://pubchem.ncbi.nlm.nih.gov/. (erişim 10 Aralık 203).
  • J. Vestel, D. J. Caldwell, L. Constantine, V. J. D'Aco, T. Davidson, D. G. Dolan, S. P. Millard, R. Murray-Smith, N. J. Parke, J. J. Ryan, J. O. Straub, P. Wilson, Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environmental Toxicology and Chemistry. 35(5) (2016), 1201-12. doi: 10.1002/etc.3260.
  • J. Yao, Y. Tang, Y. Zhang, M. Ruan, W. Wu, J. Sun, New theoretical investigation of mechanism, kinetics, and toxicity in the degradation of dimetridazole and ornidazole by hydroxyl radicals in aqueous phase, Journal of Hazardous Materials. 422 (2022), 126930. doi: 10.1016/j.jhazmat.2021.126930.
  • N. Hanna, P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L. E Nilsson, B. Berglund, O. James Dyar, A.J Tamhankar, C. Stålsby Lundborg, Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk, Environment International. 114 (2018), 131–142. doi: 10.1016/j.envint.2018.02.003.
  • J. Bengtsson-Palme, D.G. J. Larsson, Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation, Environment International. 86 (2016), 140-149. doi: 10.1016/j.envint.2015.10.015.
  • Z.F. Chen, G.-G. Ying, Y.X. Jiang, B. Yang, H.-J. Lai, Y.-S. Liu, C.-G. Pan, F.-Q. Peng, Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: Kinetics, mechanistic investigations and toxicity evaluation, Water research, 2014. 52 (2014) 83-91. doi: 10.1016/j.watres.2013.12.039.
  • A. Coors, P. Vollmar, F. Sacher, A. Thoma, Joint effects of pharmaceuticals and chemicals regu-lated under REACH in wastewater treatment plant effluents–Evaluating concepts for a risk assessment by means of experimental scenarios, Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. (2016), 126.
  • A.L. Gustafson, D.B. Stedman, J. Ball, J.M. Hillegass, A. Flood, C.X. Zhang, J. Panzica Kelly, J. Cao, A. Coburn, B.P. Enright, M.B. Tornesi, M. Hetheridge, K.A. Augustine-Rauch Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay–Progress report on phase I. Reproductive Toxicology. 33(2) (2012), 155-164. doi: 10.1016/j.reprotox.2011.12.004.
  • L. Äystö, N. Vieno, P. Fjäder, J. Mehtonen, T. Nysté, Hospitals and households as primary emission sources for risk-posing pharmaceuticals in municipal wastewater, Ecotoxicology and Environmental Safety. 262 (2023), 115149. doi: 10.1016/j.ecoenv.2023.115149.
  • J. Casado, I. Rodríguez, M. Ramil, R. Cela, Selective determination of antimycotic drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography quadrupole time-of-flight mass spectrometry, Journal of Chromatography A1339. (2014), 42–49. doi: 10.1016/j.chroma.2014.02.087.
  • J.José Rueda-Márquez, J. Moreno-Andrés, A. Rey, C. Corada-Fernández, A. Mikola, M. A. Manzano, I. Levchuk, Post-treatment of real municipal wastewater effluents by means of granular activated carbon (GAC) based catalytic processes: A focus on abatement of pharmaceutically active compounds, Water Research. 192 (2021), 116833. doi: 10.1016/j.watres.2021.116833.
  • X. Peng, Q. Huang, K. Zhang, Y. Yu, Z. Wang, C. Wang, Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China, Science of The Total Environment. 426 (2012), 311-317. doi.org/10.1016/j.scitotenv.2012.03.067.
  • Q. Sun, M. Lv, A. Hu, X. Yang, C.-P. Yu, Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China, Journal of Hazardous Materials. 277 (2014), 69-75, doi.org/10.1016/j.jhazmat.2013.11.056.
  • E. Villar-Navarro, R. M. Baena-Nogueras, M. Paniw, J.A. Perales, P.A. Lara-Martín, Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes, Water Research. 139 (2018), 19-29. doi.org/10.1016/j.watres.2018.03.072.
  • H. Wu, L. Bin, P. Guo, Y. Zhao, C. Chen, Z. Chen, B. Tang, Ecological risk assessment of the typical anti-epidemic drugs in the Pearl River Delta by tracing their source and residual characteristics, Journal of Hazardous Materials. 463 (2024), 132914. doi.org/10.1016/j.jhazmat.2023.132914.

Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi

Year 2024, , 225 - 236, 31.08.2024
https://doi.org/10.47112/neufmbd.2024.45

Abstract

Bu çalışmada Konya kenti kanalizasyon sisteminden ve Konya Kentsel Atıksu Arıtma Tesisinden alınan atıksu numunelerinde metronidazole ve ornidazole antibiyotikleri ve fluconazole antifungal farmasötiğinin varlığı araştırılmıştır. Atıksu arıtma tesisi çıkış atıksuyunda tespit edilen konsantrasyonlar ve PNEC değerleri ile risk oranı (RQ) hesaplanarak ekolojik risk ve antimikrobiyal farmasötik direnci oluşumuna karşı risk hesaplanmıştır. Kanalizasyon sisteminden alınan numunelerde metronidazole dl-2234 ng/L, ornidazole dl-91.84 ng/L, fluconazole dl-13.76 ng/L konsantrasyonlarında tespit edilmiştir. Metronidazole bileşiği en sık tespit edilen farmasötik bileşiği olmuştur. Atıksu arıtma tesisinde araştırılan farmasötikler giriş atıksunda dl-16.63 ng/L, çıkış atıksuyunda 34.58-95.35 ng/L olarak tespit edilmiştir. Farmasötiklerin alıcı ortam için önemsiz risk oluşturduğu, antimikrobiyal farmasötik direnci oluşumuna karşı orta risk oluşturduğu tespit edilmiştir. Özellikle 2019 yılında pandemi ile birlikte dünya çapında farmasötik tüketimi artmıştır. Farmasötikler tüketildikten sonra ana formda veya metabolitleri şeklinde vücuttan atılmaktadır. Atıksulardaki başlıca farmasötik kaynakları insanlar tarafından kullanılan farmasötiklerin insan vücudundan atılması ile oluşmaktadır. Ülkemizde 2013 yılından itibaren reçetesiz antibiyotik satışı yasaklanmıştır. Antifungal ilaçlar ise reçeteli veya reçetesiz temin edilebilmektedir. Bilinçsiz farmasötik tüketiminin önüne geçilmeli, mevcut atıksu arıtma tesisleri farmasötikleri de giderecek şekilde arıtım üniteleri ile modifiye edilmelidir.

References

  • H.A. Assress, H. Nyoni, B. B. Mamba, T.A.M. Msagati, Occurrence and risk assessment of azole antifungal drugs in water and Wastewater, Ecotoxicology and Environmental Safety. 187 (2020), 109868. doi: 10.1016/j.ecoenv.2019.109868.
  • S.K. Ram, H., Panidepu, V. Cheernam, R.D. Tyagi, Pharmaceutical metabolites and their by-products in hospital wastewater, Current Developments in Biotechnology and Bioengineering. (2020), 43–78. doi:10.1016/b978-0-12-819722-6.00002-x.
  • F. Bahadır, F.S. Balık, H.S. Yalçınkaya, The impact of covid-19 on the financial structure of the construction industry in Turkey, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 173-188. https://doi.org/10.47112/neufmbd.2023.17.
  • M. Chen, Y. Hong, X. Jin, C. Guo, X. Zhao, N. Liu, H. Lu, Y. Liu, J. Xu, Ranking the risks of eighty pharmaceuticals in surface water of a megacity: A multilevel optimization strategy, Science of The Total Environment. 878 (2023), 163184. doi: 10.1016/j.scitotenv.2023.163184.
  • M. Biel-Maeso, R. M. Baena-Nogueras, C. Corada-Fernández, P. A. Lara-Martín, Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain), Science of The Total Environment. 612 (2018), 649-659. doi: 10.1016/j.scitotenv.2017.08.279.
  • S. Aydin, M. E. Aydin, A. Ulvi, H. Kilic, Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment, Environmental Science and Pollution Research. (2019), 26:544–558. doi.org/10.1007/s11356-018-3563-0.
  • J.L. Santos, I. Aparicio, M. Callejon, E. Alonso, Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain), Journal of Hazardous Materials. 164 (2009), 1509-1516. doi: 10.1016/j.jhazmat.2008.09.073.
  • S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, E. Zuccato, Removal of pharmaceuticals in sewage treatment plants in Italy, Environmental Science & Technology. 40 (2006), 357-363. doi: 10.1021/es050991m.
  • R. Davarnejad, Z. Rostami Hassanvand, S. Mansoori, J. F. Kennedy, Metronidazole elimination from wastewater through photo-Fenton process using green-synthesized alginate-based hydrogel coated bimetallic iron copper nanocomposite beads as a reusable heterogeneous catalyst, Bioresource Technology Reports. 18 (2022), 101068. doi: 10.1016/j.biteb.2022.101068.
  • E. Asgari, A. Sheikhmohammadi, J. Yeganeh, Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies, International Journal of Biological Macromolecules.164 (2020), 694–706. doi: 10.1016/j.ijbiomac.2020.07.188.
  • M. Sánchez-Polo, J. Rivera-Utrilla, G. Prados-Joya, R. Ocampo-Pérez, Metronidazole photodegradation in aqueous solution by using photosensitizers and hydrogen peroxide, Journal of Chemical Technology & Biotechnology. 87 (8) (2012), 1202–1208. doi: 10.1002/jctb.3750.
  • Y. Pan, X. Li, K. Fu, H. Deng, J. Shi, Degradation of metronidazole by UV/ chlorine treatment: efficiency, mechanism, pathways and DBPs formation, Chemosphere. 224, (2019), 228–236. doi: 10.1016/j.chemosphere.2019.02.081.
  • R. Zhou, F. Liu, X. Du, C. Zhang, C. Yang, N.-A. Offiong, Y. Bi, W. Zeng, H. Ren, Removal of metronidazole from wastewater by electrocoagulation with chloride ions electrolyte: The role of reactive chlorine species and process optimization, Separation and Purification Technology. 290, (2022), 100799. doi: 10.1016/j.seppur.2022.120799.
  • F. Tamtam, F. Mercier, B. Le Bot, J. Eurin, Q. Tuc Dinh, M. Clément, M.Chevreuil, Occurrence and fate of antibiotics in the Seine River in various hydrological conditions, Science of The Total Environment. 393 (2008), 84-95. doi: 10.1016/j.scitotenv.2007.12.009.
  • J. Zeng, S. Xu, K. Lin, S. Yao, B.Yang, Z. Peng, T. Hao, X. Yu, T. Zhu, F. Jiang, J. Sun, Long-term stable and efficient degradation of ornidazole with minimized by-product formation by a biological sulfidogenic process based on elemental sulfur, Water Research. 249 (2024), 120940. doi: 10.1016/j.watres.2023.120940.
  • M. Wroński, J. Trawiński, R. Skibiński, Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges, Journal of Hazardous Materials. 465 (2024), 133167. doi: 10.1016/j.jhazmat.2023.133167.
  • ChemSpider, Search and Share Chemistry, (2023). https://www.chemspider.com/. (erişim 10 Aralık 203).
  • PubChem, National Library of Medicine, (2023). https://pubchem.ncbi.nlm.nih.gov/. (erişim 10 Aralık 203).
  • J. Vestel, D. J. Caldwell, L. Constantine, V. J. D'Aco, T. Davidson, D. G. Dolan, S. P. Millard, R. Murray-Smith, N. J. Parke, J. J. Ryan, J. O. Straub, P. Wilson, Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environmental Toxicology and Chemistry. 35(5) (2016), 1201-12. doi: 10.1002/etc.3260.
  • J. Yao, Y. Tang, Y. Zhang, M. Ruan, W. Wu, J. Sun, New theoretical investigation of mechanism, kinetics, and toxicity in the degradation of dimetridazole and ornidazole by hydroxyl radicals in aqueous phase, Journal of Hazardous Materials. 422 (2022), 126930. doi: 10.1016/j.jhazmat.2021.126930.
  • N. Hanna, P. Sun, Q. Sun, X. Li, X. Yang, X. Ji, H. Zou, J. Ottoson, L. E Nilsson, B. Berglund, O. James Dyar, A.J Tamhankar, C. Stålsby Lundborg, Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk, Environment International. 114 (2018), 131–142. doi: 10.1016/j.envint.2018.02.003.
  • J. Bengtsson-Palme, D.G. J. Larsson, Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation, Environment International. 86 (2016), 140-149. doi: 10.1016/j.envint.2015.10.015.
  • Z.F. Chen, G.-G. Ying, Y.X. Jiang, B. Yang, H.-J. Lai, Y.-S. Liu, C.-G. Pan, F.-Q. Peng, Photodegradation of the azole fungicide fluconazole in aqueous solution under UV-254: Kinetics, mechanistic investigations and toxicity evaluation, Water research, 2014. 52 (2014) 83-91. doi: 10.1016/j.watres.2013.12.039.
  • A. Coors, P. Vollmar, F. Sacher, A. Thoma, Joint effects of pharmaceuticals and chemicals regu-lated under REACH in wastewater treatment plant effluents–Evaluating concepts for a risk assessment by means of experimental scenarios, Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. (2016), 126.
  • A.L. Gustafson, D.B. Stedman, J. Ball, J.M. Hillegass, A. Flood, C.X. Zhang, J. Panzica Kelly, J. Cao, A. Coburn, B.P. Enright, M.B. Tornesi, M. Hetheridge, K.A. Augustine-Rauch Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay–Progress report on phase I. Reproductive Toxicology. 33(2) (2012), 155-164. doi: 10.1016/j.reprotox.2011.12.004.
  • L. Äystö, N. Vieno, P. Fjäder, J. Mehtonen, T. Nysté, Hospitals and households as primary emission sources for risk-posing pharmaceuticals in municipal wastewater, Ecotoxicology and Environmental Safety. 262 (2023), 115149. doi: 10.1016/j.ecoenv.2023.115149.
  • J. Casado, I. Rodríguez, M. Ramil, R. Cela, Selective determination of antimycotic drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography quadrupole time-of-flight mass spectrometry, Journal of Chromatography A1339. (2014), 42–49. doi: 10.1016/j.chroma.2014.02.087.
  • J.José Rueda-Márquez, J. Moreno-Andrés, A. Rey, C. Corada-Fernández, A. Mikola, M. A. Manzano, I. Levchuk, Post-treatment of real municipal wastewater effluents by means of granular activated carbon (GAC) based catalytic processes: A focus on abatement of pharmaceutically active compounds, Water Research. 192 (2021), 116833. doi: 10.1016/j.watres.2021.116833.
  • X. Peng, Q. Huang, K. Zhang, Y. Yu, Z. Wang, C. Wang, Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China, Science of The Total Environment. 426 (2012), 311-317. doi.org/10.1016/j.scitotenv.2012.03.067.
  • Q. Sun, M. Lv, A. Hu, X. Yang, C.-P. Yu, Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China, Journal of Hazardous Materials. 277 (2014), 69-75, doi.org/10.1016/j.jhazmat.2013.11.056.
  • E. Villar-Navarro, R. M. Baena-Nogueras, M. Paniw, J.A. Perales, P.A. Lara-Martín, Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes, Water Research. 139 (2018), 19-29. doi.org/10.1016/j.watres.2018.03.072.
  • H. Wu, L. Bin, P. Guo, Y. Zhao, C. Chen, Z. Chen, B. Tang, Ecological risk assessment of the typical anti-epidemic drugs in the Pearl River Delta by tracing their source and residual characteristics, Journal of Hazardous Materials. 463 (2024), 132914. doi.org/10.1016/j.jhazmat.2023.132914.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Waste Management, Reduction, Reuse and Recycling, Environmental Pollution and Prevention
Journal Section Articles
Authors

Senar Aydın 0000-0002-0960-480X

Arzu Ulvi 0000-0001-7303-1869

Mehmet Emin Aydın 0000-0001-6665-198X

Early Pub Date July 25, 2024
Publication Date August 31, 2024
Submission Date January 15, 2024
Acceptance Date April 5, 2024
Published in Issue Year 2024

Cite

APA Aydın, S., Ulvi, A., & Aydın, M. E. (2024). Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 6(2), 225-236. https://doi.org/10.47112/neufmbd.2024.45
AMA Aydın S, Ulvi A, Aydın ME. Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. NEU Fen Muh Bil Der. August 2024;6(2):225-236. doi:10.47112/neufmbd.2024.45
Chicago Aydın, Senar, Arzu Ulvi, and Mehmet Emin Aydın. “Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) Ve Antifungal (Fluconazole) Farmasötiklerin Varlığı Ve Risk Değerlendirmesi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 6, no. 2 (August 2024): 225-36. https://doi.org/10.47112/neufmbd.2024.45.
EndNote Aydın S, Ulvi A, Aydın ME (August 1, 2024) Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6 2 225–236.
IEEE S. Aydın, A. Ulvi, and M. E. Aydın, “Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi”, NEU Fen Muh Bil Der, vol. 6, no. 2, pp. 225–236, 2024, doi: 10.47112/neufmbd.2024.45.
ISNAD Aydın, Senar et al. “Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) Ve Antifungal (Fluconazole) Farmasötiklerin Varlığı Ve Risk Değerlendirmesi”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 6/2 (August 2024), 225-236. https://doi.org/10.47112/neufmbd.2024.45.
JAMA Aydın S, Ulvi A, Aydın ME. Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. NEU Fen Muh Bil Der. 2024;6:225–236.
MLA Aydın, Senar et al. “Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) Ve Antifungal (Fluconazole) Farmasötiklerin Varlığı Ve Risk Değerlendirmesi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 6, no. 2, 2024, pp. 225-36, doi:10.47112/neufmbd.2024.45.
Vancouver Aydın S, Ulvi A, Aydın ME. Kentsel Atıksularda Bazı Antibiyotik (Metronidazole, Ornidazole) ve Antifungal (Fluconazole) Farmasötiklerin Varlığı ve Risk Değerlendirmesi. NEU Fen Muh Bil Der. 2024;6(2):225-36.


32206                   17157           17158