Electrochemical Detection of H2O2 with SO3H-functionalized Activated Carbon/Co-B Nanocomposites
Year 2025,
Volume: 7 Issue: 1, 103 - 114
Sumeyye Sarıkaya
Gorkem Tasar
Hasan Hüseyin Ipekcı
,
Aytekin Uzunoglu
Abstract
While hydrogen peroxide has been widely used in various applications ranging from pharmaceutical to clinical and environmental to food applications, its harmful effects on health are an important challenge. Therefore, the detection of H2O2 with fast, accurate, cheap, and sensitive methods is in great demand. In this work, we proposed a novel catalyst composition to construct highly sensitive H2O2 sensors. In this study, we modified the surface of commercial activated carbon with first -SO3H groups and then the amorphous cobalt-boron phase to achieve high electrocatalytic activity toward H2O2. The Co-B@AC-SO3H samples were characterized using SEM, TEM, XPS, XRD, and Raman spectroscopy. XRD results confirmed the presence of an amorphous Co-B phase and the characteristic activated carbon peaks were obtained in both XRD and Raman results. The Co-B@AC-SO3H/GCE-based sensors showed much improved sensitivity compared to AC/GCE and AC-SO3H/GCE-based counterparts. The sensors showed high storage stability and reliability in detecting H2O2 in real samples.
Supporting Institution
This study was supported by the Necmettin Erbakan University, Scientific Research Projects Coordination Unit institution with project number 191219009.
References
- M. Dilsen, H.H. Ipekci, A. Uzunoglu, Inkjet printing of Pd/SO3H-modified graphene on different polymeric substrates to construct flexible electrochemical sensors, Journal of Materials Research. 38 (2023), 3572-3584. doi:10.1557/S43578-023-01086-7/METRICS
- A. Uzunoglu, H.H. Ipekci, The use of CeO2-modified Pt/C catalyst inks for the construction of high-performance enzyme-free H2O2 sensors, Journal of Electroanalytical Chemistry. 848 (2019), 113302. doi:10.1016/J.JELECHEM.2019.113302
- H.H. Ipekci, Electrochemical Dopamine Detection Using Palladium/Carbon Nano Onion Hybrids, Hittite Journal of Science and Engineering. 10 (2023), 201-209. doi:10.17350/HJSE19030000308
- H.H. Ipekci, Holey MoS2-based electrochemical sensors for simultaneous dopamine and uric acid detection, Analytical Methods. 15 (2023), 2989-2996. doi:10.1039/D3AY00573A
- P. Deng, J. Feng, J. Xiao, Y. Wei, X. Liu, J. Li, Q. He, Application of a simple and sensitive electrochemical sensor in simultaneous determination of paracetamol and ascorbic acid, Journal of The Electrochemical Society. 168 (2021,) 096501. doi:10.1149/1945-7111/ac1e59
- J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar, Electrochemical sensors and their applications: A review, Chemosensors. 10 (2022). doi:10.3390/chemosensors10090363
- C. Revathi, R.T. Rajendra kumar, Chapter 7 - Enzymatic and Nonenzymatic Electrochemical Biosensors, içinde: M. Hywel, C.S. Rout, D.J.B.T.-F. and S.A. of 2D M. Late (Ed.), Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, 2019: ss. 259-300. doi:10.1016/B978-0-08-102577-2.00007-5
- J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Carbon-based electrocatalysts for sustainable energy applications, Progress in Materials Science. 116 (2021), 100717. doi:10.1016/j.pmatsci.2020.100717
- C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: Carbon nanotube based electrochemical sensors for biomolecules, Analytica Chimica Acta. 662 (2010), 105-127. doi:10.1016/j.aca.2010.01.009
- Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano. 4 (2010), 1790-1798. doi:10.1021/nn100315s
- X. Sun, M. Duan, R. Li, Y. Meng, Q. Bai, L. Wang, M. Liu, Z. Yang, Z. Zhu, N. Sui, Ultrathin graphdiyne/graphene heterostructure as a robust electrochemical sensing platform, Analytical Chemistry. 94 (2022), 13598-13606. doi:10.1021/acs.analchem.2c03387
- E. Ceylan, O. Ozoglu, H.H. Ipekci, A. Tor, A. Uzunoglu, Non-enzymatic detection of methyl parathion in water using CeO2-CuO-decorated reduced graphene oxide, Microchemical Journal. 199 (2024), 110261. doi: 10.1016/j.microc.2024.110261
- S. Bulbul, E. Ayhan, H. Gökmeşe, Effect on mechanical properties of addition of coal ash as thermal power plant waste to SBR Matrix Compounds, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 135-146. doi:10.47112/neufmbd.2023.14
- İ. Akın, E. Zor, H. Bingöl, Preparation and characterization of GO/Fe3O4 doped polymeric composite membranes, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 38-52. doi:10.47112/neufmbd.2023.8
- K. Çetin, K. Şarkaya, B. Kavakcıoğlu Yardımcı, Antifungal activities of copper (II) ion and histidine incorporated polymers on yeast Saccharomyces cerevisiae, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 267-277. doi:10.47112/neufmbd.2023.24
- Y. Zuo, Y. Jiao, C. Ma, C. Duan, A novel fluorescent probe for hydrogen peroxide and its application in bio-imaging, Molecules. 26 (2021). doi:10.3390/MOLECULES26113352
- W.J. Cooper, J.K. Moegling, R.J. Kieber, J.J. Kiddle, A chemiluminescence method for the analysis of H2O2 in natural waters, Marine Chemistry. 70 (2000), 191-200. doi:10.1016/S0304-4203(00)00025-6
- K. Sunil, B. Narayana, Spectrophotometric determination of hydrogen peroxide in water and cream samples, Bulletin of Environmental Contamination and Toxicology. 81 (2008), 422-426. doi:10.1007/S00128-008-9477-7
- P. Gimeno, C. Bousquet, N. Lassu, A.-F. Maggio, C. Civade, C. Brenier, L. Lempereur, High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products, Journal of Pharmaceutical and Biomedical Analysis. 107 (2015), 386-393. doi:10.1016/j.jpba.2015.01.018
- B. Long, J. Chen, S.W. Sharshir, L. Ibrahim, W. Zhou, C. Wang, L. Wang, Z. Yuan, The mechanism and challenges of cobalt-boron-based catalysts in the hydrolysis of sodium borohydride, Journal of Materials Chemistry A. 12 (2024), 5606-5625. doi:10.1039/D3TA07308D
- L. Xin, F. Yang, Y. Qiu, A. Uzunoglu, T. Rockward, R.L. Borup, L.A. Stanciu, W. Li, J. Xie, Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer electrolyte membrane fuel cells (PEMFCs), Journal of The Electrochemical Society. 163 (2016), F1228-F1236. doi:10.1149/2.0921610JES/XML
- L. Xin, F. Yang, S. Rasouli, Y. Qiu, Z.F. Li, A. Uzunoglu, C.J. Sun, Y. Liu, P. Ferreira, W. Li, Y. Ren, L.A. Stanciu, J. Xie, Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization, ACS Catalysis. 6 (2016), 2642-2653. doi:10.1021/ACSCATAL.5B02722/ASSET/IMAGES/MEDIUM/CS-2015-02722X_0010.GIF
- U.I. Nda-Umar, I. Ramli, E.N. Muhamad, N. Azri, Y.H. Taufiq-Yap, Optimization and characterization of mesoporous sulfonated carbon catalyst and its application in modeling and optimization of acetin production, Molecules. 25 (2020), 5221. doi:10.3390/molecules25225221
- C.B. Rodella, D.H. Barrett, S.F. Moya, S.J.A. Figueroa, M.T.B. Pimenta, A.A.S. Curvelo, V.T. Silva, Pyhsical and chemical studies of tungsten carbide catalysts: effects of Ni promotion and sulphonated carbon, RSC Advances. 5 (2015), 23874. doi:10.1039/c5ra03252k
- A. Uzunoglu, S. Song, L.A. Stanciu, A sensitive electrochemical H2O2 sensor based on PdAg-decorated reduced graphene oxide nanocomposites , Journal of The Electrochemical Society. 163 (2016), B379-B384. doi:10.1149/2.1201607JES/XML
- A. Uzunoglu, A.D. Scherbarth, L.A. Stanciu, Bimetallic PdCu/SPCE non-enzymatic hydrogen peroxide sensors, Sensors and Actuators B: Chemical. 220 (2015), 968-976. doi:10.1016/J.SNB.2015.06.033
- B. Amanulla, S. Palanisamy, S.M. Chen, V. Velusamy, T.W. Chiu, T.W. Chen, S.K. Ramaraj, A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite, Journal of Colloid and Interface Science. 487 (2017), 370-377. doi:10.1016/J.JCIS.2016.10.050
- Y. Zhang, Q. Cao, F. Zhu, H. Xu, Y. Zhang, W. Xu, X. Liao, An amperometric hydrogen peroxide sensor based on reduced graphene oxide/carbon nanotubes/Pt NPs modified glassy carbon electrode, International Journal of Electrochemical Science. 15 (2020), 8771-8785. doi:10.20964/2020.09.62
- S. Yang, G. Li, G. Wang, J. Zhao, M. Hu, L. Qu, A novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphene composite modified electrode, Sensors and Actuators B: Chemical. 208 (2015), 593-599. doi:10.1016/J.SNB.2014.11.055
- C.M. Parnell, F. Watanabe, U.B. Nasini, B.C. Berry, T. Mitchell, A.U. Shaikh, A. Ghosh, Electrochemical sensing of hydrogen peroxide using a cobalt(III) complex supported on carbonaceous nanomaterials, Journal of Electroanalytical Chemistry. 740 (2015), 37-44. doi:10.1016/J.JELECHEM.2014.12.022
- S.A. Bhat, N. Rashid, M.A. Rather, S.A. Pandit, P.P. Ingole, M.A. Bhat, Vitamin B12 functionalized N-Doped graphene: A promising electro-catalyst for hydrogen evolution and electro-oxidative sensing of H2O2, Electrochimica Acta. 337 (2020), 135730. doi:10.1016/J.ELECTACTA.2020.135730
- S. Sahoo, P.K. Sahoo, S. Manna, A.K. Satpati, A novel low cost nonenzymatic hydrogen peroxide sensor based on CoFe2O4/CNTs nanocomposite modified electrode, Journal of Electroanalytical Chemistry. 876 (2020), 114504. doi:10.1016/J.JELECHEM.2020.114504
- M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability, Biosensors and Bioelectronics. 45 (2013), 206-212. doi:10.1016/J.BIOS.2013.02.010
- F. Jia, H. Zhong, F. Zhu, X. Li, Y. Wang, Z. Cheng, L. Zhang, Z. Sheng, L. Guo, Nonenzymatic hydrogen peroxide electrochemical sensor based on Au-HS/SO3H-PMO (Et) nanocomposite, Electroanalysis. 26 (2014), 2244-2251. doi:10.1002/ELAN.201400318
- I.S. Hosu, Q. Wang, A. Vasilescu, S.F. Peteu, V. Raditoiu, S. Railian, V. Zaitsev, K. Turcheniuk, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide, RSC Advances. 5 (2014), 1474-1484. doi:10.1039/C4RA09781E
H2O2'nin SO3H ile Fonksiyonelleştirilmiş Aktif Karbon/Co-B Nanokompozitleri ile Elektrokimyasal Tespiti
Year 2025,
Volume: 7 Issue: 1, 103 - 114
Sumeyye Sarıkaya
Gorkem Tasar
Hasan Hüseyin Ipekcı
,
Aytekin Uzunoglu
Abstract
Hidrojen peroksitin farmasötikten klinik ve çevresel uygulamalara ve gıda uygulamalarına kadar çeşitli alanlarda yaygın olarak kullanıldığı göz önüne alındığında, canlı sağlığı üzerindeki zararlı etkileri önemli bir sorundur. Bu nedenle, H2O2'nin hızlı, doğru, ucuz ve hassas yöntemlerle tespiti büyük talep görmektedir. Bu çalışmada, oldukça duyarlı H2O2 sensörleri oluşturmak için yeni bir katalizör kompozisyonu önerilmiştir. Bu bağlamda, ticari olarak aktifleştirilmiş karbon yüzeyini önce -SO3H gruplarıyla modifiye edilmiş ve ardından H2O2'ye karşı yüksek elektrokatalitik aktivite elde etmek için amorf kobalt-boron fazı kullanılmıştır. Co-B@AC-SO3H örnekleri SEM, TEM, XPS, XRD ve Raman spektroskopisi kullanılarak karakterize edilmiştir. XRD sonuçlarıyla amorf bir Co-B fazının varlığı doğrulanmış ve XRD ve Raman sonuçlarında karakteristik aktifleştirilmiş karbon tepe noktaları gösterilmiştir. Co-B@AC-SO3H/GCE tabanlı sensörler, AC/GCE ve AC-SO3H/GCE tabanlı karşılaştırma yapıldığında çok daha iyi duyarlılık göstermiştir. Sensörler, gerçek örneklerde H2O2 tespiti için yüksek depolama stabilitesi ve yüksek güvenilirlik göstermiştir.
Supporting Institution
Necmettin Erbakan Üniversitesi BAP
References
- M. Dilsen, H.H. Ipekci, A. Uzunoglu, Inkjet printing of Pd/SO3H-modified graphene on different polymeric substrates to construct flexible electrochemical sensors, Journal of Materials Research. 38 (2023), 3572-3584. doi:10.1557/S43578-023-01086-7/METRICS
- A. Uzunoglu, H.H. Ipekci, The use of CeO2-modified Pt/C catalyst inks for the construction of high-performance enzyme-free H2O2 sensors, Journal of Electroanalytical Chemistry. 848 (2019), 113302. doi:10.1016/J.JELECHEM.2019.113302
- H.H. Ipekci, Electrochemical Dopamine Detection Using Palladium/Carbon Nano Onion Hybrids, Hittite Journal of Science and Engineering. 10 (2023), 201-209. doi:10.17350/HJSE19030000308
- H.H. Ipekci, Holey MoS2-based electrochemical sensors for simultaneous dopamine and uric acid detection, Analytical Methods. 15 (2023), 2989-2996. doi:10.1039/D3AY00573A
- P. Deng, J. Feng, J. Xiao, Y. Wei, X. Liu, J. Li, Q. He, Application of a simple and sensitive electrochemical sensor in simultaneous determination of paracetamol and ascorbic acid, Journal of The Electrochemical Society. 168 (2021,) 096501. doi:10.1149/1945-7111/ac1e59
- J. Baranwal, B. Barse, G. Gatto, G. Broncova, A. Kumar, Electrochemical sensors and their applications: A review, Chemosensors. 10 (2022). doi:10.3390/chemosensors10090363
- C. Revathi, R.T. Rajendra kumar, Chapter 7 - Enzymatic and Nonenzymatic Electrochemical Biosensors, içinde: M. Hywel, C.S. Rout, D.J.B.T.-F. and S.A. of 2D M. Late (Ed.), Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, 2019: ss. 259-300. doi:10.1016/B978-0-08-102577-2.00007-5
- J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Carbon-based electrocatalysts for sustainable energy applications, Progress in Materials Science. 116 (2021), 100717. doi:10.1016/j.pmatsci.2020.100717
- C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: Carbon nanotube based electrochemical sensors for biomolecules, Analytica Chimica Acta. 662 (2010), 105-127. doi:10.1016/j.aca.2010.01.009
- Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano. 4 (2010), 1790-1798. doi:10.1021/nn100315s
- X. Sun, M. Duan, R. Li, Y. Meng, Q. Bai, L. Wang, M. Liu, Z. Yang, Z. Zhu, N. Sui, Ultrathin graphdiyne/graphene heterostructure as a robust electrochemical sensing platform, Analytical Chemistry. 94 (2022), 13598-13606. doi:10.1021/acs.analchem.2c03387
- E. Ceylan, O. Ozoglu, H.H. Ipekci, A. Tor, A. Uzunoglu, Non-enzymatic detection of methyl parathion in water using CeO2-CuO-decorated reduced graphene oxide, Microchemical Journal. 199 (2024), 110261. doi: 10.1016/j.microc.2024.110261
- S. Bulbul, E. Ayhan, H. Gökmeşe, Effect on mechanical properties of addition of coal ash as thermal power plant waste to SBR Matrix Compounds, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 135-146. doi:10.47112/neufmbd.2023.14
- İ. Akın, E. Zor, H. Bingöl, Preparation and characterization of GO/Fe3O4 doped polymeric composite membranes, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 38-52. doi:10.47112/neufmbd.2023.8
- K. Çetin, K. Şarkaya, B. Kavakcıoğlu Yardımcı, Antifungal activities of copper (II) ion and histidine incorporated polymers on yeast Saccharomyces cerevisiae, Necmettin Erbakan University Journal of Science and Engineering. 5 (2023), 267-277. doi:10.47112/neufmbd.2023.24
- Y. Zuo, Y. Jiao, C. Ma, C. Duan, A novel fluorescent probe for hydrogen peroxide and its application in bio-imaging, Molecules. 26 (2021). doi:10.3390/MOLECULES26113352
- W.J. Cooper, J.K. Moegling, R.J. Kieber, J.J. Kiddle, A chemiluminescence method for the analysis of H2O2 in natural waters, Marine Chemistry. 70 (2000), 191-200. doi:10.1016/S0304-4203(00)00025-6
- K. Sunil, B. Narayana, Spectrophotometric determination of hydrogen peroxide in water and cream samples, Bulletin of Environmental Contamination and Toxicology. 81 (2008), 422-426. doi:10.1007/S00128-008-9477-7
- P. Gimeno, C. Bousquet, N. Lassu, A.-F. Maggio, C. Civade, C. Brenier, L. Lempereur, High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products, Journal of Pharmaceutical and Biomedical Analysis. 107 (2015), 386-393. doi:10.1016/j.jpba.2015.01.018
- B. Long, J. Chen, S.W. Sharshir, L. Ibrahim, W. Zhou, C. Wang, L. Wang, Z. Yuan, The mechanism and challenges of cobalt-boron-based catalysts in the hydrolysis of sodium borohydride, Journal of Materials Chemistry A. 12 (2024), 5606-5625. doi:10.1039/D3TA07308D
- L. Xin, F. Yang, Y. Qiu, A. Uzunoglu, T. Rockward, R.L. Borup, L.A. Stanciu, W. Li, J. Xie, Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer electrolyte membrane fuel cells (PEMFCs), Journal of The Electrochemical Society. 163 (2016), F1228-F1236. doi:10.1149/2.0921610JES/XML
- L. Xin, F. Yang, S. Rasouli, Y. Qiu, Z.F. Li, A. Uzunoglu, C.J. Sun, Y. Liu, P. Ferreira, W. Li, Y. Ren, L.A. Stanciu, J. Xie, Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization, ACS Catalysis. 6 (2016), 2642-2653. doi:10.1021/ACSCATAL.5B02722/ASSET/IMAGES/MEDIUM/CS-2015-02722X_0010.GIF
- U.I. Nda-Umar, I. Ramli, E.N. Muhamad, N. Azri, Y.H. Taufiq-Yap, Optimization and characterization of mesoporous sulfonated carbon catalyst and its application in modeling and optimization of acetin production, Molecules. 25 (2020), 5221. doi:10.3390/molecules25225221
- C.B. Rodella, D.H. Barrett, S.F. Moya, S.J.A. Figueroa, M.T.B. Pimenta, A.A.S. Curvelo, V.T. Silva, Pyhsical and chemical studies of tungsten carbide catalysts: effects of Ni promotion and sulphonated carbon, RSC Advances. 5 (2015), 23874. doi:10.1039/c5ra03252k
- A. Uzunoglu, S. Song, L.A. Stanciu, A sensitive electrochemical H2O2 sensor based on PdAg-decorated reduced graphene oxide nanocomposites , Journal of The Electrochemical Society. 163 (2016), B379-B384. doi:10.1149/2.1201607JES/XML
- A. Uzunoglu, A.D. Scherbarth, L.A. Stanciu, Bimetallic PdCu/SPCE non-enzymatic hydrogen peroxide sensors, Sensors and Actuators B: Chemical. 220 (2015), 968-976. doi:10.1016/J.SNB.2015.06.033
- B. Amanulla, S. Palanisamy, S.M. Chen, V. Velusamy, T.W. Chiu, T.W. Chen, S.K. Ramaraj, A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite, Journal of Colloid and Interface Science. 487 (2017), 370-377. doi:10.1016/J.JCIS.2016.10.050
- Y. Zhang, Q. Cao, F. Zhu, H. Xu, Y. Zhang, W. Xu, X. Liao, An amperometric hydrogen peroxide sensor based on reduced graphene oxide/carbon nanotubes/Pt NPs modified glassy carbon electrode, International Journal of Electrochemical Science. 15 (2020), 8771-8785. doi:10.20964/2020.09.62
- S. Yang, G. Li, G. Wang, J. Zhao, M. Hu, L. Qu, A novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphene composite modified electrode, Sensors and Actuators B: Chemical. 208 (2015), 593-599. doi:10.1016/J.SNB.2014.11.055
- C.M. Parnell, F. Watanabe, U.B. Nasini, B.C. Berry, T. Mitchell, A.U. Shaikh, A. Ghosh, Electrochemical sensing of hydrogen peroxide using a cobalt(III) complex supported on carbonaceous nanomaterials, Journal of Electroanalytical Chemistry. 740 (2015), 37-44. doi:10.1016/J.JELECHEM.2014.12.022
- S.A. Bhat, N. Rashid, M.A. Rather, S.A. Pandit, P.P. Ingole, M.A. Bhat, Vitamin B12 functionalized N-Doped graphene: A promising electro-catalyst for hydrogen evolution and electro-oxidative sensing of H2O2, Electrochimica Acta. 337 (2020), 135730. doi:10.1016/J.ELECTACTA.2020.135730
- S. Sahoo, P.K. Sahoo, S. Manna, A.K. Satpati, A novel low cost nonenzymatic hydrogen peroxide sensor based on CoFe2O4/CNTs nanocomposite modified electrode, Journal of Electroanalytical Chemistry. 876 (2020), 114504. doi:10.1016/J.JELECHEM.2020.114504
- M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability, Biosensors and Bioelectronics. 45 (2013), 206-212. doi:10.1016/J.BIOS.2013.02.010
- F. Jia, H. Zhong, F. Zhu, X. Li, Y. Wang, Z. Cheng, L. Zhang, Z. Sheng, L. Guo, Nonenzymatic hydrogen peroxide electrochemical sensor based on Au-HS/SO3H-PMO (Et) nanocomposite, Electroanalysis. 26 (2014), 2244-2251. doi:10.1002/ELAN.201400318
- I.S. Hosu, Q. Wang, A. Vasilescu, S.F. Peteu, V. Raditoiu, S. Railian, V. Zaitsev, K. Turcheniuk, Q. Wang, M. Li, R. Boukherroub, S. Szunerits, Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide, RSC Advances. 5 (2014), 1474-1484. doi:10.1039/C4RA09781E