Using Solar Power Plant for Reactive Power Support
Year 2025,
Volume: 7 Issue: 2, 273 - 285, 31.08.2025
Harun Köroğlu
,
Sabri Altunkaya
Abstract
Reactive power compensation investments are made for energy production, transmission and distribution systems. Currently, electricity distribution companies invest in reactors, capacitors and magnetically controlled reactors for reactive power compensation. With these investments, transmission companies receive reactive power support from existing production plants within the scope of ancillary services. Nowadays, with the increase in distributed generation facilities such as solar power plants (SPPs) and wind power plants (WPP), the energy flow connected to the distribution grid has become bidirectional. In distributed generation facilities such as SPP and WPP, during hours when there is no production, the capacitive reactive originating from the conductors increases and the increase in production causes voltage rise in the region. In this study, the usability of SPPs for reactive power compensation was investigated in order to turn the disadvantages of distributed energy resources into advantages and to reduce compensation investment costs. For this purpose, necessary simulation studies were carried out to obtain reactive power support from a solar power plant connected to a transformer center in a electricity distribution region. Later, experimental studies were carried out by receiving reactive power support from the solar power plant in the region for seven hours. As a result, it has been emphasized that the reactive power support received from the solar power plant will reduce compensation investments.
Ethical Statement
1- The authors have no conflict of interest declared for this study.
2- This study was produced from Harun Köroğlu's Master's thesis titled "Providing Reactive Power Support from Solar Power Plants in the Electricity Distribution Network", completed in 2024 at Necmettin Erbakan University, Institute of Science and Technology, Department of Electrical and Electronics Engineering, under the supervision of Asst Prof Sabri Altunkaya.
References
-
S. Sreekumar, D.S. Kumar and J.S. Savier, A case study on self healing of smart grid with islanding and inverter volt–VAr function, IEEE Transactions on Industry Applications. 56 (2020), 5408-5416. doi:10.1109/TIA.2020.3011664
-
B.E. Tankut. Voltage Regulation for Grid Connected Photovoltaic Systems using Reactive Power, Yüksek Lisans Tezi, Hasan Kalyoncu Üniversitesi Fen Bilimleri Enstitüsü, Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı, Gaziantep, 2019
-
T.A. Boghdady and Y.A. Mohamed, Reactive power compensation using STATCOM in a PV grid connected system with a modified MPPT method, Ain Shams Engineering Journal. 14 (2023), 102060. doi:10.1016/j.asej.2022.102060
-
A.A. Suryawanshi and A. Tapde, Maximizing solar power output with pv-statcom for reactive power compensation in on-grid systems, International Journal of Intelligent Systems and Applications in Engineering. 12 (2024), 3382-3387.
-
P. Jahangiri and D.C. Aliprantis, Distributed Volt/VAr control by PV inverters, IEEE Transactions on Power Systems. 28 (2013), 3429-3439. doi:10.1109/TPWRS.2013.2256375
-
M.S.I. Tarek, A. Siam, M. Zia and M.M. Rahman. A Novel Five-Level Inverter Topology with Reactive Power Control for Grid-Connected PV System. In: 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). Kajang, Malaysia, 2018. doi:10.1109/ICSGCE.2018.8556812
-
W. Zhong, G. Tzounas and F. Milano, Improving the power system dynamic response through a combined voltage-frequency control of distributed energy resources, IEEE Transactions on Power Systems. 37 (2022), 4375-4384. doi:10.1109/TPWRS.2022.3148243
-
G. Lalor, A. Mullane and M.O. Malley, Frequency control and wind turbine technologies, IEEE Transactions on Power Systems. 20 (2005), 1905-1913. doi:10.1109/TPWRS.2005.857393
-
A.J. Lamadrid and T. Mount, Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping, Energy Economics. 34 (2012), 1959-1971. doi: 10.1016/j.eneco.2012.08.011
-
N.K. Roy, H.R. Pota and M.J. Hossain, Reactive power management of distribution networks with wind generation for improving voltage stability, Renewable Energy. 58 (2013), 85-94. doi:10.1016/j.renene.2013.02.030
-
A. Chatterjee, K. Mohanty, V.S. Kommukuri and K. Thakre, Design and experimental investigation of digital model predictive current controller for single phase grid integrated photovoltaic systems. Renewable Energy. 108 (2017), 438-448. doi:10.1016/j.renene.2017.02.057
-
R. Krishan, S.K. Singh, S. Patnaik, S. Verma. Reactive Power Control Strategies for Solar Inverters to Increase the Penetration Level of RE in Power Grid. In: 2nd International Conference on Large-Scale Grid Integration of Renewable Energy in India. New Delhi, India, 2019.
-
K. Tharuka Lulbadda and U. Hemapala, Use of solar PV inverters during night-time for voltage regulation and stability of the utility grid, Clean Energy. 6 (2022), 646-658. doi:10.1093/ce/zkac042
-
A.M. Howlader, S. Sadoyama, L.R. Roose and S. Sepasi, Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study, Renewable Energy. 127 (2018), 145-157. doi:10.1016/j.renene.2018.04.058
-
P. Kayal and C.K. Chanda, Strategic approach for reinforcement of intermittent renewable energy sources and capacitor bank for sustainable electric power distribution system, International Journal of Electrical Power & Energy Systems. 83 (2016), 335-351. doi:10.1016/j.ijepes.2016.04.029
-
A. Joseph, K. Smedley and S. Mehraeen, Secure power distribution against reactive power control malfunction in DER units, IEEE Transactions on Power Delivery. 36 (2021), 1552-1561. doi:10.1109/TPWRD.2020.3011376
-
F. Bernáth and P. Mastný, Power factor compensation of photovoltaic power plant, Electroscope 5 (2012)
-
Anonim, Elektrik Şebeke Yönetmeliği, https://www.epdk.gov.tr/Detay/Icerik/3-6730/elektrik--sebeke- (accessed 12 January 2024).
-
H. Köroğlu. Elektrik Dağıtım Şebekesinde Güneş Enerji Santralinden Reaktif Güç Desteği Sağlanması, Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Elektrik Elektronik Mühendisliği Ana Bilim Dalı, Konya, 2024
-
M. Flota-Bañuelos, M. Espinosa-Trujillo, J. Cruz-Chan and T. Kamal, Experimental study of an inverter control for reactive power compensation in a grid-connected solar photovoltaic system using sliding mode control, Energies. 16 (2023), 853. doi:10.3390/en16020853
-
V. Kumar and M. Singh, Reactive power compensation using derated power generation mode of modified P&O algorithm in grid-interfaced PV system, Renewable Energy.178 (2021), 108-117.
-
A. Dhaneria. Grid Connected PV System with Reactive Power Compensation for the Grid. In: 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). Washington, DC, USA, 2020. doi: 10.1109/ISGT45199.2020.9087728
Güneş Enerji Santralinin Reaktif Güç Desteği için Kullanılması
Year 2025,
Volume: 7 Issue: 2, 273 - 285, 31.08.2025
Harun Köroğlu
,
Sabri Altunkaya
Abstract
Enerji üretim, iletim ve dağıtım sistemlerinde reaktif güç kompanzasyonu için yatırım yapılmaktadır. Mevcutta elektrik dağıtım şirketleri reaktif güç kompanzasyonu için reaktör, kapasitör ve manyetik kontrollü reaktör yatrımı yapmaktadır. İletim şirketleri ise bu yatırımlara ek olarak mevcutta bulunann üretim santrallerinden yan hizmetler kapsamında reaktif güç desteği almaktadır. Günümüzde güneş enerji santrali (GES), rüzgâr enerji santrali (RES) gibi dağıtık üretim tesislerinin artmasıyla birlikte dağıtım şebekesine bağlı enerji akışı çift yönlü hale gelmiştir. GES ve RES gibi dağıtık üretim tesislerinde üretim olmadığı saatlerde iletkenlerden kaynaklı kapasitif reaktifin artmasına ve üretimin artması ise bölgede gerilim yükselmesine neden olur. Bu çalışmada dağıtık enerji kaynaklarının dezavantajlarını avantaja çevirmek, kompanzasyon yatırım maliyetlerini azaltmak amacıyla GES’lerin reaktif güç kompanzasyonu için kullanılabilirliği araştırılmıştır. Bunun için bir elektrik dağıtım bölgesinde bulunan bir trafo merkezine bağlı bir GES’nden reaktif güç desteği alınması için gerekli simülasyon çalışmaları yapılmıştır. Daha sonra bölgedeki GES’nden yedi saat boyunca reaktif güç desteği alınarak deneysel çalışmalar yapılmıştır. Sonuç olarak GES’nden alınan reaktif güç desteği sayesinde kompanzasyon yatırımlarının azalacağı vurgulanmıştır.
Ethical Statement
1- Yazarların bu çalışma için beyan ettikleri herhangi bir çıkar çatışması yoktur.
2- Bu çalışma Dr. Öğr. Üyesi Sabri Altunkaya’nın danışmanlığında Harun Köroğlu’nun Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü Elektrik-Elektronik Mühendisliği Anabilim Dalında 2024 yılında tamamladığı “Elektrik Dağıtım Şebekesinde Güneş Enerji Santralinden Reaktif Güç Desteği Sağlanması” başlıklı Yüksek Lisans tezinden üretilmiştir.
References
-
S. Sreekumar, D.S. Kumar and J.S. Savier, A case study on self healing of smart grid with islanding and inverter volt–VAr function, IEEE Transactions on Industry Applications. 56 (2020), 5408-5416. doi:10.1109/TIA.2020.3011664
-
B.E. Tankut. Voltage Regulation for Grid Connected Photovoltaic Systems using Reactive Power, Yüksek Lisans Tezi, Hasan Kalyoncu Üniversitesi Fen Bilimleri Enstitüsü, Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı, Gaziantep, 2019
-
T.A. Boghdady and Y.A. Mohamed, Reactive power compensation using STATCOM in a PV grid connected system with a modified MPPT method, Ain Shams Engineering Journal. 14 (2023), 102060. doi:10.1016/j.asej.2022.102060
-
A.A. Suryawanshi and A. Tapde, Maximizing solar power output with pv-statcom for reactive power compensation in on-grid systems, International Journal of Intelligent Systems and Applications in Engineering. 12 (2024), 3382-3387.
-
P. Jahangiri and D.C. Aliprantis, Distributed Volt/VAr control by PV inverters, IEEE Transactions on Power Systems. 28 (2013), 3429-3439. doi:10.1109/TPWRS.2013.2256375
-
M.S.I. Tarek, A. Siam, M. Zia and M.M. Rahman. A Novel Five-Level Inverter Topology with Reactive Power Control for Grid-Connected PV System. In: 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). Kajang, Malaysia, 2018. doi:10.1109/ICSGCE.2018.8556812
-
W. Zhong, G. Tzounas and F. Milano, Improving the power system dynamic response through a combined voltage-frequency control of distributed energy resources, IEEE Transactions on Power Systems. 37 (2022), 4375-4384. doi:10.1109/TPWRS.2022.3148243
-
G. Lalor, A. Mullane and M.O. Malley, Frequency control and wind turbine technologies, IEEE Transactions on Power Systems. 20 (2005), 1905-1913. doi:10.1109/TPWRS.2005.857393
-
A.J. Lamadrid and T. Mount, Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping, Energy Economics. 34 (2012), 1959-1971. doi: 10.1016/j.eneco.2012.08.011
-
N.K. Roy, H.R. Pota and M.J. Hossain, Reactive power management of distribution networks with wind generation for improving voltage stability, Renewable Energy. 58 (2013), 85-94. doi:10.1016/j.renene.2013.02.030
-
A. Chatterjee, K. Mohanty, V.S. Kommukuri and K. Thakre, Design and experimental investigation of digital model predictive current controller for single phase grid integrated photovoltaic systems. Renewable Energy. 108 (2017), 438-448. doi:10.1016/j.renene.2017.02.057
-
R. Krishan, S.K. Singh, S. Patnaik, S. Verma. Reactive Power Control Strategies for Solar Inverters to Increase the Penetration Level of RE in Power Grid. In: 2nd International Conference on Large-Scale Grid Integration of Renewable Energy in India. New Delhi, India, 2019.
-
K. Tharuka Lulbadda and U. Hemapala, Use of solar PV inverters during night-time for voltage regulation and stability of the utility grid, Clean Energy. 6 (2022), 646-658. doi:10.1093/ce/zkac042
-
A.M. Howlader, S. Sadoyama, L.R. Roose and S. Sepasi, Distributed voltage regulation using Volt-Var controls of a smart PV inverter in a smart grid: An experimental study, Renewable Energy. 127 (2018), 145-157. doi:10.1016/j.renene.2018.04.058
-
P. Kayal and C.K. Chanda, Strategic approach for reinforcement of intermittent renewable energy sources and capacitor bank for sustainable electric power distribution system, International Journal of Electrical Power & Energy Systems. 83 (2016), 335-351. doi:10.1016/j.ijepes.2016.04.029
-
A. Joseph, K. Smedley and S. Mehraeen, Secure power distribution against reactive power control malfunction in DER units, IEEE Transactions on Power Delivery. 36 (2021), 1552-1561. doi:10.1109/TPWRD.2020.3011376
-
F. Bernáth and P. Mastný, Power factor compensation of photovoltaic power plant, Electroscope 5 (2012)
-
Anonim, Elektrik Şebeke Yönetmeliği, https://www.epdk.gov.tr/Detay/Icerik/3-6730/elektrik--sebeke- (accessed 12 January 2024).
-
H. Köroğlu. Elektrik Dağıtım Şebekesinde Güneş Enerji Santralinden Reaktif Güç Desteği Sağlanması, Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Elektrik Elektronik Mühendisliği Ana Bilim Dalı, Konya, 2024
-
M. Flota-Bañuelos, M. Espinosa-Trujillo, J. Cruz-Chan and T. Kamal, Experimental study of an inverter control for reactive power compensation in a grid-connected solar photovoltaic system using sliding mode control, Energies. 16 (2023), 853. doi:10.3390/en16020853
-
V. Kumar and M. Singh, Reactive power compensation using derated power generation mode of modified P&O algorithm in grid-interfaced PV system, Renewable Energy.178 (2021), 108-117.
-
A. Dhaneria. Grid Connected PV System with Reactive Power Compensation for the Grid. In: 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). Washington, DC, USA, 2020. doi: 10.1109/ISGT45199.2020.9087728