Research Article
BibTex RIS Cite

Investigation of Superstructure Performance Based on the Fixed Base Foundation, Winkler, and Pseudo-Coupled Methods

Year 2025, Volume: 7 Issue: 2, 259 - 272, 31.08.2025

Abstract

In the present study, the performance of 5-story building resting on medium dense sandy soil was analyzed by fixed-base, Winkler and Pseudo-coupled methods. The period of structure, axial loads and shear forces acting on columns, earthquake forces, story displacements, foundation base pressure and settlement values were determined in static and dynamic loading cases. The choice of foundation solution method in structural engineering profoundly influences the dynamic and static behavior of buildings under various loading conditions. Comparing Winkler and Pseudo-coupled methods to the fixed-base foundation, several key differences emerge: building periods are closer together in Winkler and Pseudo-coupled methods, with fixed-base periods being 6.7% longer. Axial loads on columns under gravity plus live load (G+Q) are minimally affected by the foundation method, but under earthquake (EQx) loading, Winkler and Pseudo-coupled methods significantly reduce axial loads on 1st and 5th floor columns compared to the fixed-base method. Shear forces on corner columns are 46% lower with Winkler and Pseudo-coupled methods. Moreover, these methods result in a 7% increase in earthquake force and 4.7% less story displacement than the fixed-base method. Additionally, the location of maximum base pressure, settlement, and differential settlement varies depending on the foundation analysis method employed. These findings emphasize the critical role of foundation selection in optimizing structural stability, performance, and resilience under different loading scenarios, particularly seismic events.

References

  • X.-Y. Cao, D. Shen, D.-C. Feng, C.-L. Wang, Z. Qu, G. Wu, Seismic retrofitting of existing frame buildings through externally attached sub-structures: State of the art review and future perspectives, Journal of Building Engineering. 57 (2022), 104904.
  • H. Hao, K. Bi, W. Chen, T.M. Pham, J. Li, Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures, Engineering Structures. 277 (2023), 115477.
  • G. Lazorenko, A. Kasprzhitskii, Z. Khakiev, V. Yavna, Dynamic behavior and stability of soil foundation in heavy haul railway tracks: A review, Construction and Building Materials. 205 (2019), 111-136.
  • Y. Guzel, F. Güzel, Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. (2024). doi:10.47112/neufmbd.2024.31.
  • X. Wu, Y. Hu, Y. Li, J. Yang, L. Duan, T. Wang, T. Adcock, Z. Jiang, Z. Gao, Z. Lin, Foundations of offshore wind turbines: A review, Renewable and Sustainable Energy Reviews. 104 (2019), 379-393.
  • A.W. Lacey, W. Chen, H. Hao, K. Bi, Structural response of modular buildings–an overview, Journal of building engineering. 16 (2018), 45-56.
  • B.M. EL-garhy, M.M. osman, Winkler Coefficient for Beams on Elastic Foundation, ERJ. Engineering Research Journal. 25 (2002), 1-18. doi:10.21608/erjm.2002.70869.
  • N. Allotey, M. Hesham El Naggar, Analytical moment–rotation curves for rigid foundations based on a Winkler model, Soil Dynamics and Earthquake Engineering. 23 (2003), 367-381. doi:10.1016/S0267-7261(03)00034-4.
  • E. Winkler, Die Lehrevonder Elasticitaetund Festigkeit, , içinde: Prag. Dominicus, 1867: s. 182.
  • İ. Özkan, Y. Yenginar, A.S. Ecemiş, Analysis of raft foundation on sandy soils by Winkler and Pseudo-coupled methods, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi. 31 (2023), 675-688. doi:10.31796/ogummf.1224081.
  • H. Díaz, C.G. Soares, Review of the current status, technology and future trends of offshore wind farms, Ocean Engineering. 209 (2020), 107381.
  • T.P. Doğan, I.H. Erkan, Evaluation of the Nonlinear Seismic Responses of High-Rise Reinforced Concrete Buildings with Different Foundations and Structural Plans—Considering Soil-Structure Interactions, Buildings. 14 (2024), 1686. doi:10.3390/buildings14061686.
  • H. Tahghighi, A. Mohammadi, Numerical evaluation of soil–structure interaction effects on the seismic performance and vulnerability of reinforced concrete buildings, International Journal of Geomechanics. 20 (2020), 04020072.
  • J.M. Carbonell, L. Monforte, M.O. Ciantia, M. Arroyo, A. Gens, Geotechnical particle finite element method for modeling of soil-structure interaction under large deformation conditions, Journal of Rock Mechanics and Geotechnical Engineering. 14 (2022), 967-983.
  • S. Grecu, L.B. Ibsen, A. Barari, Winkler springs for axial response of suction bucket foundations in cohesionless soil, Soils and Foundations. 61 (2021), 64-79.
  • S.K. Suryasentana, H.J. Burd, B.W. Byrne, A. Shonberg, A Winkler model for suction caisson foundations in homogeneous and non-homogeneous linear elastic soil, Géotechnique. 72 (2022), 407-423.
  • Z. Zhang, M. Huang, C. Xu, Y. Jiang, W. Wang, Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model, Tunnelling and Underground Space Technology. 78 (2018), 146-158.
  • L. Pantelidis, The equivalent modulus of elasticity of layered soil mediums for designing shallow foundations with the Winkler spring hypothesis: A critical review, Engineering Structures. 201 (2019), 109452.
  • H. Asadi-Ghoozhdi, R. Attarnejad, A Winkler-based model for inelastic response of soil–structure systems with embedded foundation considering kinematic and inertial interaction effects, Structures. Elsevier, 28 (2020), 589-603.
  • S. Carbonari, J.D.R. Bordón, L.A. Padrón, M. Morici, F. Dezi, J.J. Aznárez, G. Leoni, O. Maeso, Winkler model for predicting the dynamic response of caisson foundations, Earthquake Engineering & Structural Dynamics. 51 (2022), 3069-3096.
  • S.J. Brandenberg, M.G. Durante, G. Mylonakis, J.P. Stewart, Winkler solution for seismic earth pressures exerted on flexible walls by vertically inhomogeneous soil, Journal of Geotechnical and Geoenvironmental Engineering. 146 (2020) 04020127.
  • Y. Yönet, Yapı-Zemin Etkileşiminin Binaların Deprem Davranışına Etkisinin Sonlu Elemanlar Yöntemiyle İncelenmesi, Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Konya, 2022.
  • G. Özyurt, Use of spatially variable subgrade modulus for improved accuracy in structural modeling of raft foundations, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Ankara, 2023.
  • J.W. Ringsberg, C.G. Soares, Advances in the Analysis and Design of Marine Structures, CRC Press Taylor & Francis Group, 2023.
  • İ. Vapur, İ.F. Kara, E. Akın, Kahramanmaraş ve Hatay depremlerinin Antakya ve Samandağ ilçelerindeki yapısal etkileri ve çözüm önerileri, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. (2023). doi:10.28948/ngumuh.1293147.
  • T. Wang, J. Chen, Y. Zhou, X. Wang, X. Lin, X. Wang, Q. Shang, Preliminary investigation of building damage in Hatay under February 6, Turkey earthquakes, Earthquake Engineering and Engineering Vibration. 22 (2023), 853-866. doi:10.1007/s11803-023-2201-0.
  • EN 1998-1, Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Standard, rue de Stassart, Brussels, 2004.

Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi

Year 2025, Volume: 7 Issue: 2, 259 - 272, 31.08.2025

Abstract

Bu çalışmada, orta sıkı kumlu zemin üzerine oturan 5 katlı bir binanın performansı ankastre temel, Winkler ve Pseudo-eşlenik yöntemleriyle analiz edilmiştir. Yapının periyodu, kolonlara etki eden eksenel yükler ve kesme kuvvetleri, deprem kuvvetleri, kat yer değiştirmeleri, temel taban basıncı ve yer değiştirme değerleri statik ve dinamik yükleme durumlarında belirlenmiştir. Yapısal mühendislikte kullanılan temel çözüm yöntemi, çeşitli yükleme koşullarında binaların dinamik ve statik davranışlarını derinden etkilemektedir. Winkler ve Pseudo-eşlenik yöntemlerinin ankastre temele göre karşılaştırılmasıyla, birkaç önemli fark ortaya çıkmıştır: Winkler ve Pseudo-eşlenik yöntemlerinde bina periyotları birbirine yakın iken ankastre temel çözümünde periyot %6,7 daha fazla olmaktadır. Ölü ve hareketli yük (G+Q) altında kolonlara etki eden eksenel yükler temel analiz yönteminden oldukça az etkilenmektedir, ancak deprem (EQx) yükü altında Winkler ve Pseudo-eşlenik yöntemleri, ankastre temel yöntemine göre 1. ve 5. kat kolonlarındaki eksenel yükleri önemli ölçüde azalmaktadır. Köşe kolonlarındaki kesme kuvvetleri Winkler ve Pseudo-eşlenik yöntemlerinde %46 daha düşük elde edilmiştir. Ayrıca, bu yöntemler deprem kuvvetinde %7 artış ve ankastre temel yöntemine göre %4,7 daha az kat yer değiştirmesi sonucunu vermiştir. Maksimum temel basıncı, oturma ve farklı oturmanın konumu, kullanılan temel analiz yöntemine bağlı olarak değişmektedir. Bu bulgular, özellikle deprem olayları gibi farklı yükleme senaryoları altında yapısal stabilite, performans ve dayanıklılığın optimize edilmesinde temel seçiminin kritik rolünü vurgulamaktadır.

References

  • X.-Y. Cao, D. Shen, D.-C. Feng, C.-L. Wang, Z. Qu, G. Wu, Seismic retrofitting of existing frame buildings through externally attached sub-structures: State of the art review and future perspectives, Journal of Building Engineering. 57 (2022), 104904.
  • H. Hao, K. Bi, W. Chen, T.M. Pham, J. Li, Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures, Engineering Structures. 277 (2023), 115477.
  • G. Lazorenko, A. Kasprzhitskii, Z. Khakiev, V. Yavna, Dynamic behavior and stability of soil foundation in heavy haul railway tracks: A review, Construction and Building Materials. 205 (2019), 111-136.
  • Y. Guzel, F. Güzel, Considerations of Design Response Spectrum Involving Site Effect: Application to the Kocaeli Region, Türkiye, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. (2024). doi:10.47112/neufmbd.2024.31.
  • X. Wu, Y. Hu, Y. Li, J. Yang, L. Duan, T. Wang, T. Adcock, Z. Jiang, Z. Gao, Z. Lin, Foundations of offshore wind turbines: A review, Renewable and Sustainable Energy Reviews. 104 (2019), 379-393.
  • A.W. Lacey, W. Chen, H. Hao, K. Bi, Structural response of modular buildings–an overview, Journal of building engineering. 16 (2018), 45-56.
  • B.M. EL-garhy, M.M. osman, Winkler Coefficient for Beams on Elastic Foundation, ERJ. Engineering Research Journal. 25 (2002), 1-18. doi:10.21608/erjm.2002.70869.
  • N. Allotey, M. Hesham El Naggar, Analytical moment–rotation curves for rigid foundations based on a Winkler model, Soil Dynamics and Earthquake Engineering. 23 (2003), 367-381. doi:10.1016/S0267-7261(03)00034-4.
  • E. Winkler, Die Lehrevonder Elasticitaetund Festigkeit, , içinde: Prag. Dominicus, 1867: s. 182.
  • İ. Özkan, Y. Yenginar, A.S. Ecemiş, Analysis of raft foundation on sandy soils by Winkler and Pseudo-coupled methods, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi. 31 (2023), 675-688. doi:10.31796/ogummf.1224081.
  • H. Díaz, C.G. Soares, Review of the current status, technology and future trends of offshore wind farms, Ocean Engineering. 209 (2020), 107381.
  • T.P. Doğan, I.H. Erkan, Evaluation of the Nonlinear Seismic Responses of High-Rise Reinforced Concrete Buildings with Different Foundations and Structural Plans—Considering Soil-Structure Interactions, Buildings. 14 (2024), 1686. doi:10.3390/buildings14061686.
  • H. Tahghighi, A. Mohammadi, Numerical evaluation of soil–structure interaction effects on the seismic performance and vulnerability of reinforced concrete buildings, International Journal of Geomechanics. 20 (2020), 04020072.
  • J.M. Carbonell, L. Monforte, M.O. Ciantia, M. Arroyo, A. Gens, Geotechnical particle finite element method for modeling of soil-structure interaction under large deformation conditions, Journal of Rock Mechanics and Geotechnical Engineering. 14 (2022), 967-983.
  • S. Grecu, L.B. Ibsen, A. Barari, Winkler springs for axial response of suction bucket foundations in cohesionless soil, Soils and Foundations. 61 (2021), 64-79.
  • S.K. Suryasentana, H.J. Burd, B.W. Byrne, A. Shonberg, A Winkler model for suction caisson foundations in homogeneous and non-homogeneous linear elastic soil, Géotechnique. 72 (2022), 407-423.
  • Z. Zhang, M. Huang, C. Xu, Y. Jiang, W. Wang, Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model, Tunnelling and Underground Space Technology. 78 (2018), 146-158.
  • L. Pantelidis, The equivalent modulus of elasticity of layered soil mediums for designing shallow foundations with the Winkler spring hypothesis: A critical review, Engineering Structures. 201 (2019), 109452.
  • H. Asadi-Ghoozhdi, R. Attarnejad, A Winkler-based model for inelastic response of soil–structure systems with embedded foundation considering kinematic and inertial interaction effects, Structures. Elsevier, 28 (2020), 589-603.
  • S. Carbonari, J.D.R. Bordón, L.A. Padrón, M. Morici, F. Dezi, J.J. Aznárez, G. Leoni, O. Maeso, Winkler model for predicting the dynamic response of caisson foundations, Earthquake Engineering & Structural Dynamics. 51 (2022), 3069-3096.
  • S.J. Brandenberg, M.G. Durante, G. Mylonakis, J.P. Stewart, Winkler solution for seismic earth pressures exerted on flexible walls by vertically inhomogeneous soil, Journal of Geotechnical and Geoenvironmental Engineering. 146 (2020) 04020127.
  • Y. Yönet, Yapı-Zemin Etkileşiminin Binaların Deprem Davranışına Etkisinin Sonlu Elemanlar Yöntemiyle İncelenmesi, Yüksek Lisans Tezi, Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Konya, 2022.
  • G. Özyurt, Use of spatially variable subgrade modulus for improved accuracy in structural modeling of raft foundations, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Ankara, 2023.
  • J.W. Ringsberg, C.G. Soares, Advances in the Analysis and Design of Marine Structures, CRC Press Taylor & Francis Group, 2023.
  • İ. Vapur, İ.F. Kara, E. Akın, Kahramanmaraş ve Hatay depremlerinin Antakya ve Samandağ ilçelerindeki yapısal etkileri ve çözüm önerileri, Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. (2023). doi:10.28948/ngumuh.1293147.
  • T. Wang, J. Chen, Y. Zhou, X. Wang, X. Lin, X. Wang, Q. Shang, Preliminary investigation of building damage in Hatay under February 6, Turkey earthquakes, Earthquake Engineering and Engineering Vibration. 22 (2023), 853-866. doi:10.1007/s11803-023-2201-0.
  • EN 1998-1, Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Standard, rue de Stassart, Brussels, 2004.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Reinforced Concrete Buildings, Earthquake Engineering, Civil Geotechnical Engineering, Structural Engineering
Journal Section Articles
Authors

Ali Serdar Ecemiş 0000-0002-7332-3738

Yavuz Yenginar 0000-0002-6916-4068

İlyas Özkan 0000-0001-9660-8229

Publication Date August 31, 2025
Submission Date July 4, 2024
Acceptance Date January 20, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Ecemiş, A. S., Yenginar, Y., & Özkan, İ. (2025). Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(2), 259-272.
AMA Ecemiş AS, Yenginar Y, Özkan İ. Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi. NEJSE. August 2025;7(2):259-272.
Chicago Ecemiş, Ali Serdar, Yavuz Yenginar, and İlyas Özkan. “Ankastre Temel, Winkler Ve Psödo-Eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 2 (August 2025): 259-72.
EndNote Ecemiş AS, Yenginar Y, Özkan İ (August 1, 2025) Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 2 259–272.
IEEE A. S. Ecemiş, Y. Yenginar, and İ. Özkan, “Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi”, NEJSE, vol. 7, no. 2, pp. 259–272, 2025.
ISNAD Ecemiş, Ali Serdar et al. “Ankastre Temel, Winkler Ve Psödo-Eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/2 (August2025), 259-272.
JAMA Ecemiş AS, Yenginar Y, Özkan İ. Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi. NEJSE. 2025;7:259–272.
MLA Ecemiş, Ali Serdar et al. “Ankastre Temel, Winkler Ve Psödo-Eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 2, 2025, pp. 259-72.
Vancouver Ecemiş AS, Yenginar Y, Özkan İ. Ankastre Temel, Winkler ve Psödo-eşlenik Yöntemlerine Göre Üstyapı Performansının İncelenmesi. NEJSE. 2025;7(2):259-72.