Research Article
BibTex RIS Cite

Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis

Year 2025, Volume: 7 Issue: 2, 322 - 330, 31.08.2025

Abstract

The polyol method has gained significant attention for synthesizing Silver nanowires (AgNWs), offering a straightforward, cost-effective, and versatile approach to producing high-quality nanowires. In polyol method, the choice of metal salts performs a crucial function in determining the properties of the final AgNW product. This research specifically explores the influence of different metal salts on the length and diameter of AgNWs synthesized through the polyol method. Each synthesis involved the use of two distinct types of salts, with NaCl being a constant component. Trace amounts of Iron(III) Nitrate (Fe(NO3)3), Copper(II) Chloride (CuCl2), and Potassium Bromide (KBr) were introduced in conjunction with NaCl. The morphology and dimensional distribution of the nanowires were analyzed using Field Emission Scanning Electron Microscopy, while X-ray Diffraction was applied to study the crystal structure of the nanoparticles. Notably, the utilization of KBr in the synthesis led to the production of AgNWs with the highest aspect ratio, resulting in nanowires measuring 6.2 ± 2.5 µm in length. Additionally, the synthesis assisted by CuCl2 revealed a substantial presence of other silver nanostructures, such as nanocubes and nanotriangles, alongside nanowires.

Project Number

TUBITAK Proje No:1919B012004065

References

  • P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications, Materials Science and Engineering: B. 223 (2017), 1-23. doi:10.1016/J.MSEB.2017.05.002.
  • J.J. Chen, S.L. Liu, H. Bin Wu, E. Sowade, R.R. Baumann, Y. Wang, F.Q. Gu, C.R.L. Liu, Z.S. Feng, Structural regulation of silver nanowires and their application in flexible electronic thin films, Materials & Design. 154 (2018), 266-274. doi:10.1016/J.MATDES.2018.05.018.
  • S.H. Kim, B.S. Choi, K. Kang, Y.S. Choi, S.I. Yang, Low temperature synthesis and growth mechanism of Ag nanowires, Journal of Alloys and Compounds. 433 (2007), 261-264. doi:10.1016/J.JALLCOM.2006.06.053.
  • M. Mazur, Electrochemically prepared silver nanoflakes and nanowires, Electrochemistry Communications. 6 (2004), 400-403. doi:10.1016/J.ELECOM.2004.02.011.
  • S. Berchmans, R.G. Nirmal, G. Prabaharan, S. Madhu, V. Yegnaraman, Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers, Journal of Colloid and Interface Science. 303 (2006), 604-610. doi:10.1016/J.JCIS.2006.07.060.
  • S. Fahad, H. Yu, L. Wang, Zain-ul-Abdin, M. Haroon, R.S. Ullah, A. Nazir, K. ur R. Naveed, T. Elshaarani, A. Khan, Recent progress in the synthesis of silver nanowires and their role as conducting materials, Journal of Materials Science. 54 (2019) 997-1035. doi:10.1007/S10853-018-2994-9.
  • A. Amirjani, P. Marashi, D.H. Fatmehsari, The effects of physicochemical parameters on the synthesis of silver nanowires via polyol method, International Nano Letters. 4 (2014), 1-5. doi:10.1007/S40089-014-0108-5.
  • Y. Sun, R.A. Graff, M.S. Strano, J.A. Rogers, Top-down fabrication of semiconductor nanowires with alternating structures along their longitudinal and transverse axes, Small. 1 (2005), 1052-1057. doi:10.1002/SMLL.200500094.
  • S. Sarisozen, N.A. Tertemiz, T.A. Arica, N. Polat, C. Kocabas, F.M. Balci, S. Balci, Transition metal salt promoted, green, and High‐Yield synthesis of silver nanowires for flexible transparent conductive electrodes, ChemistrySelect. 6 (2021), 12548-12554. doi:10.1002/SLCT.202103434.
  • E.G. Yamamoto, M.P. Dantas, G. Yamanishi, F.B. Soares, A. Urbano, S.A. Lourenço, C.E. Cava, Silver nanowire synthesis analyzing NaCl, CuCl2, and NaBr as halide salt with additional thermal, acid, and solvent post-treatments for transparent and flexible electrode applications, Applied Nanoscience (Switzerland). 12 (2022), 205-213. doi:10.1007/S13204-021-02305-5.
  • S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: An extensive parametric study, Crystal Growth and Design. 11 (2011), 4963-4969. doi:10.1021/CG200874G
  • S. Hemmati, M.T. Harris, D.P. Barkey, Polyol Silver Nanowire Synthesis and the Outlook for a Green Process, Journal of Nanomaterials. 2020 (2020), 9341983. doi:10.1155/2020/9341983.
  • A.A. Ashkarran, M. Derakhshi, The effect of FeCl3 in the shape control polyol synthesis of silver nanospheres and nanowires, Journal of Cluster Science. 26 (2015), 1901-1910. doi:10.1007/S10876-015-0887-5
  • Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, One-Pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes, ACS Applied Materials and Interfaces. 9 (2017), 25465-25473. doi:10.1021/ACSAMI.7B07146
  • F. Basarir, S. De, H. Daghigh Shirazi, J. Vapaavuori, Ultra-long silver nanowires prepared via hydrothermal synthesis enable efficient transparent heaters, Nanoscale Advances. 4 (2022), 4410-4417. doi:10.1039/D2NA00560C.
  • K. Zhang, Y. Du, S. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications, Organic Electronics. 26 (2015), 380-385. doi:10.1016/J.ORGEL.2015.08.008.
  • R.R. Da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y. Xia, Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method, ACS Nano. 10 (2016), 7892–7900. doi:10.1021/ACSNANO.6B03806
  • L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano. 4 (2010), 2955-2963. doi:10.1021/NN1005232/
  • L. José Andrés, M. Fe Menéndez, D. Gómez, A. Luisa Martínez, N. Bristow, J. Paul Kettle, A. Menéndez, B. Ruiz, Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells, Nanotechnology. 26 (2015), 1-9. doi:10.1088/0957-4484/26/26/265201.
  • K.E. Korte, S.E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, Journal of Materials Chemistry. 18 (2008), 437-441. doi:10.1039/B714072J.
  • S. Hemmati, D.P. Barkey, N. Gupta, R. Banfield, Synthesis and characterization of silver nanowire suspensions for printable conductive media, ECS Journal of Solid State Science and Technology. 4 (2015), 3075–3079. doi:10.1149/2.0121504jss.
  • H. Sim, S. Bok, B. Kim, M. Kim, G. Lim, S.M. Cho, B. Lim, Organic‐Stabilizer‐Free polyol synthesis of silver nanowires for electrode applications, Angewandte Chemie International Edition. 55 (2016), 11814–11818. doi:10.1002/anie.201604980.
  • B. Wiley, Y. Sun, Y. Xia, Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) Species, Langmuir. 21 (2005), 8077-8080. doi:10.1021/LA050887I
  • D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, Large-scale synthesis of silver nanowires via a solvothermal method, Journal of Materials Science: Materials in Electronics. 22 (2011), 6-13. doi:10.1007/S10854-010-0074-2.
  • S.D. Nusair, M.J. Almasaleekh, H. Abder-Rahman, M. Alkhatatbeh, Environmental exposure of humans to bromide in the Dead Sea area: Measurement of genotoxicy and apoptosis biomarkers, Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 837 (2019), 34-41. doi:10.1016/J.MRGENTOX.2018.09.006.
  • A. Chetan, P. Ami, Effects of Heavy Metals (Cu and Cd) on Growth of Leafy Vegetables- Spinacia oleracea and Amaranthus caudatus, International Research Journal of Environmental Sciences. 4 (2015), 63-69.
  • X. Ding, L. Song, Y. Han, Y. Wang, X. Tang, G. Cui, Z. Xu, Effects of Fe3+ on acute toxicity and regeneration of Planarian (Dugesia japonica) at different temperatures, BioMed Research International. 2019 (2019), 8591631. doi:10.1155/2019/8591631.
  • M. Akbayrak, Ü. Ata, T.N. Aslan, Influence of zinc doping ratio on silver nanoparticles synthesized via green method for enhanced catalytic degradation of toxic organic dyes, Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 7 (2025), 56-76. doi:10.47112/neufmbd.2025.75.

Poliol Sentezinde Metal Tuzlarının Gümüş Nanotel Morfolojisi Üzerindeki Etkisi

Year 2025, Volume: 7 Issue: 2, 322 - 330, 31.08.2025

Abstract

Poliol yöntemi, yüksek kaliteli gümüş nanotellerin (AgNWs) sentezi için basit, ekonomik ve çok yönlü bir yaklaşım sunmasıyla dikkat çekmektedir. Bu yöntemde, kullanılan metal tuzları, elde edilen AgNWs ürününün özelliklerini belirlemede önemli bir rol oynar. Bu araştırma, poliol yöntemiyle sentezlenen AgNWs uzunluğu ve çapı üzerinde farklı metal tuzlarının etkisini incelenmiştir. Her sentezde Sodyum Klorür (NaCl) sabit bir bileşen olarak kullanılmış ve buna ek olarak iki farklı tuz türü eklenmiştir. NaCl ile birlikte eser miktarda Demir (III) Nitrat (Fe(NO3)3), Bakır(II) Klorür (CuCl2) ve Potasyum Bromür (KBr) kullanılmıştır. Nanotellerin şekli ve boyut dağılımı Alan Emisyonlu Taramalı Elektron Mikroskobu ile analiz edilmiş, nanopartiküllerin kristal yapısı ise X-ışını Kırınımı ile incelenmiştir. KBr tuzu kullanılarak yapılan sentezlerde en yüksek boy/en oranına sahip AgNWs üretildiği görülmüş ve bu nanotellerin uzunluğu 6,2 ± 2,5 µm olarak ölçülmüştür. Ayrıca, CuCl2 tuzu kullanılarak yapılan sentezde, nanotellerin yanı sıra nanoküpler ve nanoüçgenler gibi diğer gümüş nanoyapılarının da önemli ölçüde oluştuğu gözlemlenmiştir.

Supporting Institution

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 2209-A programı kapsamında desteklenmiştir.

Project Number

TUBITAK Proje No:1919B012004065

References

  • P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, Y. Wei, Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications, Materials Science and Engineering: B. 223 (2017), 1-23. doi:10.1016/J.MSEB.2017.05.002.
  • J.J. Chen, S.L. Liu, H. Bin Wu, E. Sowade, R.R. Baumann, Y. Wang, F.Q. Gu, C.R.L. Liu, Z.S. Feng, Structural regulation of silver nanowires and their application in flexible electronic thin films, Materials & Design. 154 (2018), 266-274. doi:10.1016/J.MATDES.2018.05.018.
  • S.H. Kim, B.S. Choi, K. Kang, Y.S. Choi, S.I. Yang, Low temperature synthesis and growth mechanism of Ag nanowires, Journal of Alloys and Compounds. 433 (2007), 261-264. doi:10.1016/J.JALLCOM.2006.06.053.
  • M. Mazur, Electrochemically prepared silver nanoflakes and nanowires, Electrochemistry Communications. 6 (2004), 400-403. doi:10.1016/J.ELECOM.2004.02.011.
  • S. Berchmans, R.G. Nirmal, G. Prabaharan, S. Madhu, V. Yegnaraman, Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers, Journal of Colloid and Interface Science. 303 (2006), 604-610. doi:10.1016/J.JCIS.2006.07.060.
  • S. Fahad, H. Yu, L. Wang, Zain-ul-Abdin, M. Haroon, R.S. Ullah, A. Nazir, K. ur R. Naveed, T. Elshaarani, A. Khan, Recent progress in the synthesis of silver nanowires and their role as conducting materials, Journal of Materials Science. 54 (2019) 997-1035. doi:10.1007/S10853-018-2994-9.
  • A. Amirjani, P. Marashi, D.H. Fatmehsari, The effects of physicochemical parameters on the synthesis of silver nanowires via polyol method, International Nano Letters. 4 (2014), 1-5. doi:10.1007/S40089-014-0108-5.
  • Y. Sun, R.A. Graff, M.S. Strano, J.A. Rogers, Top-down fabrication of semiconductor nanowires with alternating structures along their longitudinal and transverse axes, Small. 1 (2005), 1052-1057. doi:10.1002/SMLL.200500094.
  • S. Sarisozen, N.A. Tertemiz, T.A. Arica, N. Polat, C. Kocabas, F.M. Balci, S. Balci, Transition metal salt promoted, green, and High‐Yield synthesis of silver nanowires for flexible transparent conductive electrodes, ChemistrySelect. 6 (2021), 12548-12554. doi:10.1002/SLCT.202103434.
  • E.G. Yamamoto, M.P. Dantas, G. Yamanishi, F.B. Soares, A. Urbano, S.A. Lourenço, C.E. Cava, Silver nanowire synthesis analyzing NaCl, CuCl2, and NaBr as halide salt with additional thermal, acid, and solvent post-treatments for transparent and flexible electrode applications, Applied Nanoscience (Switzerland). 12 (2022), 205-213. doi:10.1007/S13204-021-02305-5.
  • S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: An extensive parametric study, Crystal Growth and Design. 11 (2011), 4963-4969. doi:10.1021/CG200874G
  • S. Hemmati, M.T. Harris, D.P. Barkey, Polyol Silver Nanowire Synthesis and the Outlook for a Green Process, Journal of Nanomaterials. 2020 (2020), 9341983. doi:10.1155/2020/9341983.
  • A.A. Ashkarran, M. Derakhshi, The effect of FeCl3 in the shape control polyol synthesis of silver nanospheres and nanowires, Journal of Cluster Science. 26 (2015), 1901-1910. doi:10.1007/S10876-015-0887-5
  • Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, One-Pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes, ACS Applied Materials and Interfaces. 9 (2017), 25465-25473. doi:10.1021/ACSAMI.7B07146
  • F. Basarir, S. De, H. Daghigh Shirazi, J. Vapaavuori, Ultra-long silver nanowires prepared via hydrothermal synthesis enable efficient transparent heaters, Nanoscale Advances. 4 (2022), 4410-4417. doi:10.1039/D2NA00560C.
  • K. Zhang, Y. Du, S. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications, Organic Electronics. 26 (2015), 380-385. doi:10.1016/J.ORGEL.2015.08.008.
  • R.R. Da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y. Xia, Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method, ACS Nano. 10 (2016), 7892–7900. doi:10.1021/ACSNANO.6B03806
  • L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano. 4 (2010), 2955-2963. doi:10.1021/NN1005232/
  • L. José Andrés, M. Fe Menéndez, D. Gómez, A. Luisa Martínez, N. Bristow, J. Paul Kettle, A. Menéndez, B. Ruiz, Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells, Nanotechnology. 26 (2015), 1-9. doi:10.1088/0957-4484/26/26/265201.
  • K.E. Korte, S.E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process, Journal of Materials Chemistry. 18 (2008), 437-441. doi:10.1039/B714072J.
  • S. Hemmati, D.P. Barkey, N. Gupta, R. Banfield, Synthesis and characterization of silver nanowire suspensions for printable conductive media, ECS Journal of Solid State Science and Technology. 4 (2015), 3075–3079. doi:10.1149/2.0121504jss.
  • H. Sim, S. Bok, B. Kim, M. Kim, G. Lim, S.M. Cho, B. Lim, Organic‐Stabilizer‐Free polyol synthesis of silver nanowires for electrode applications, Angewandte Chemie International Edition. 55 (2016), 11814–11818. doi:10.1002/anie.201604980.
  • B. Wiley, Y. Sun, Y. Xia, Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) Species, Langmuir. 21 (2005), 8077-8080. doi:10.1021/LA050887I
  • D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang, Large-scale synthesis of silver nanowires via a solvothermal method, Journal of Materials Science: Materials in Electronics. 22 (2011), 6-13. doi:10.1007/S10854-010-0074-2.
  • S.D. Nusair, M.J. Almasaleekh, H. Abder-Rahman, M. Alkhatatbeh, Environmental exposure of humans to bromide in the Dead Sea area: Measurement of genotoxicy and apoptosis biomarkers, Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 837 (2019), 34-41. doi:10.1016/J.MRGENTOX.2018.09.006.
  • A. Chetan, P. Ami, Effects of Heavy Metals (Cu and Cd) on Growth of Leafy Vegetables- Spinacia oleracea and Amaranthus caudatus, International Research Journal of Environmental Sciences. 4 (2015), 63-69.
  • X. Ding, L. Song, Y. Han, Y. Wang, X. Tang, G. Cui, Z. Xu, Effects of Fe3+ on acute toxicity and regeneration of Planarian (Dugesia japonica) at different temperatures, BioMed Research International. 2019 (2019), 8591631. doi:10.1155/2019/8591631.
  • M. Akbayrak, Ü. Ata, T.N. Aslan, Influence of zinc doping ratio on silver nanoparticles synthesized via green method for enhanced catalytic degradation of toxic organic dyes, Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 7 (2025), 56-76. doi:10.47112/neufmbd.2025.75.
There are 28 citations in total.

Details

Primary Language English
Subjects Nanomaterials
Journal Section Research Article
Authors

Mücahit Karasakal 0009-0000-5783-686X

İrem Sena Demirel 0000-0003-4597-0097

Emre Burak Ertuş 0000-0002-3897-2409

Project Number TUBITAK Proje No:1919B012004065
Publication Date August 31, 2025
Submission Date August 26, 2024
Acceptance Date April 7, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Karasakal, M., Demirel, İ. S., & Ertuş, E. B. (2025). Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(2), 322-330.
AMA Karasakal M, Demirel İS, Ertuş EB. Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis. NEJSE. August 2025;7(2):322-330.
Chicago Karasakal, Mücahit, İrem Sena Demirel, and Emre Burak Ertuş. “Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 2 (August 2025): 322-30.
EndNote Karasakal M, Demirel İS, Ertuş EB (August 1, 2025) Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 2 322–330.
IEEE M. Karasakal, İ. S. Demirel, and E. B. Ertuş, “Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis”, NEJSE, vol. 7, no. 2, pp. 322–330, 2025.
ISNAD Karasakal, Mücahit et al. “Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/2 (August2025), 322-330.
JAMA Karasakal M, Demirel İS, Ertuş EB. Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis. NEJSE. 2025;7:322–330.
MLA Karasakal, Mücahit et al. “Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 2, 2025, pp. 322-30.
Vancouver Karasakal M, Demirel İS, Ertuş EB. Influence of Metal Salts on Silver Nanowire Morphology in Polyol Synthesis. NEJSE. 2025;7(2):322-30.