Bir yüzeyin gönderim sınıfı grubu, yön koruyan kendisine giden diffeomorfizmalarının izotopi sınıflarını tanımlayan bir grup olup, matematiğin pek çok alanında, özellikle topoloji, cebir ve geometride önemli bir rol oynar. Topolojide, gönderim sınıfı grupları 3-manifoldların ve lif demetlerin incelenmesinde önemlidir; cebir ve geometri alanlarında ise otomorfizm teorisi, modül uzayları ve yüzeyler üzerindeki kompleks yapılar ile yakın bir ilişkiye sahiptir. Gönderim sınıfı grupları konusunda ilginç bir bakış açısı, gönderim sınıfı gruplarının kohomoloji sınıflarının incelenmesini içerir. Yönlendirilebilir yüzeylerin gönderim sınıfı gruplarının kohomoloji sınıfları, yüzey demetlerinin karakteristik sınıfları olarak düşünülebilir. Earle, Morita, Furuta ve Trapp tarafından verilen, yönlendirilebilir yüzeylerin gönderim sınıfı gruplarının kohomoloji sınıfının çeşitli inşaları vardır. Bu inşalar çok farklı görünmektedir. Bu nedenle, çeşitli yazarlar bu yapıları karşılaştırarak aralarındaki ilişkileri daha iyi anlamak için çaba sarf ettiler. Furuta tarafından önerilen ve Trapp tarafından sunulan gönderim sınıfı gruplarının kohomoloji sınıflarını veren çapraz homomorfizmler dolanım sayıları ile ilişkilidir. Bu çalışmada, bu iki farklı yapı arasındaki ilişkiyi gösteriyoruz.
Bu çalışma Prof. Dr. Mustafa KORKMAZ danışmanlığında Ağustos 2018 tarihinde sunulan “Generalized Chillingworth Classes on Subsurface Torelli Groups” başlıklı doktora tezinden üretilmiştir. Ayrıca VI. Kadın Matematikçiler Derneği Çalıştayında sözlü olarak sunulan ancak tam metni yayımlanmayan “Crossed Homomorphisms on The Mapping Class Group” adlı bildirinin içeriği geliştirilerek ve kısmen değiştirilerek üretilmiştir.
The mapping class group of a surface, which describes the isotopy classes of orientation-preserving self-diffeomorphisms, plays an important role in many areas of mathematics, particularly in topology, algebra and geometry. In topology, mapping class groups are essential for studying 3-manifolds and fiber bundles, while in algebra and geometry, they are closely related to the theory of automorphisms, moduli spaces, and complex structures on surfaces. An interesting perspective on mapping class groups involves the study of their cohomology classes. Cohomology classes of the mapping class groups of orientable surfaces can be considered as characteristic classes of surface bundles. There are several constructions of the cohomology class of the mapping class groups of orientable surfaces given by Earle, Morita, Furuta, and Trapp. These constructions seem very different. Therefore, various authors have made efforts to better understand the relationships between these constructions by comparing them. The crossed homomorphisms which yield the cohomology classes of the mapping class groups, as proposed by Furuta and presented by Trapp, are related to winding numbers. In this study, we show the relation between these two different constructions.
This study was produced from the Ph.D. thesis titled “Generalized Chillingworth Classes on Subsurface Torelli Groups”, which was presented under the supervision of Prof. Dr. Mustafa KORKMAZ in August 2018. It was also produced by developing and partially changing the content of the paper titled “Crossed Homomorphisms on The Mapping Class Group”, which was presented orally at the VI. Association of Women Mathematicians Workshop but whose full text was not published.
Primary Language | English |
---|---|
Subjects | Topology |
Journal Section | Articles |
Authors | |
Publication Date | August 31, 2025 |
Submission Date | October 1, 2024 |
Acceptance Date | December 8, 2024 |
Published in Issue | Year 2025 Volume: 7 Issue: 2 |