Research Article
BibTex RIS Cite

Uzaktan Algılama Yağış Verileri Yardımıyla Kuraklık Aşma Olasılığı İndeksi’ni (KAOİ) Kullanarak Konya İli Kuraklık Analizi

Year 2025, Volume: 7 Issue: 2, 309 - 321, 31.08.2025

Abstract

Kuraklık hem çevre hem de insan hayatı için riskler oluşturan, yeri ve süresi konusunda belirsizlikle karakterize edilen iklimsel bir fenomendir. Son analizler, çeşitli matematiksel yöntemler ve teknolojideki ilerlemeler kullanılarak farklı zaman dilimlerinde kuraklıklar üzerinde gerçekleştirilebilir. Bu çalışma, Türkiye'nin Konya İlinde belirlenen 31 gözlem noktası üzerinde bir kuraklık analizi yapmak üzere tasarlanmıştır. Analiz edilen veriler, Mart 2000'den Şubat 2025'e kadar kaydedilen aylık toplam yağış değerlerini içermekte olup, bu veriler PERSIANN sistemi (Yapay Sinir Ağları kullanarak Uzaktan Algılama ile Yağış Tahmini) kaynaklıdır. Belirlenen noktalar için aylık yağış toplamları, Kuraklık Aşma Olasılığı İndeksi (KAOİ) için girdi parametreleri olarak kullanılmıştır. Bulgulara göre, 2006 yılı, özellikle Konya İli genelinde, şiddetli kuraklık koşullarıyla yaşanırken, 2019 yılı ise ıslaklık koşullarıyla karakterize edilmiştir. Islak koşulların daha sık karşılaşıldığı ve bu durumun yüzde 50,17'lik bir sıklık değeriyle belirlendiği gösterilmiştir.

References

  • N.K. Mallenahalli, Comparison of parametric and nonparametric standardized precipitation index for detecting meteorological drought over the Indian region, Theoretical and Applied Climatology. 142 (2020), 219–236. doi:10.1007/s00704-020-03296-z
  • E. Topçu, Testing of Drought Exceedance Probability Index (DEPI) for Turkey using PERSIANN data for 2000-2021 period, Italian Journal of Agrometeorology. 2 (2021), 15-28. doi:10.36253/ijam-1308
  • D.A. Wilhite, M.H. Glantz, Understanding: the drought phenomenon: the role of definitions, Water International. 10(3) (1985), 111-120. doi:10.1080/02508068508686328
  • E. Topçu, N. Seçkin N, Drought Analysis of the Seyhan Basin by using Standardized Precipitation Index (SPI) and L-Moments, Journal of Agricultural Science. 22 (2016), 196-215. doi:10.1501/Tarimbil_0000001381
  • E. Topçu, Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach, Natural Hazards. 112(1) (2022), 697-723. doi:10.1007/s11069-021-05201-x
  • E. Topçu, F. Karaçor, A comparative investigation on the applicability of the actual precipitation index (API) with the standardized precipitation index (SPI): the case study of Aras Basin, Turkey, Theoretical and Applied Climatology. 154(1) (2023), 29-42. doi:10.1007/s00704-023-04499-w
  • E. Topçu, F. Karaçor, Erzurum istasyonunun standartlaştırılmış yağış evapotranspirasyon indeksi ve bütünleşik kuraklık indeksi kullanılarak kuraklık analizi, Politeknik Dergisi. 24(2) (2021). doi:10.2339/politeknik.682168
  • E. Topçu, N. Seçkin, N.A. Haktanır, Drought analyses of Eastern Mediterranean, Seyhan, Ceyhan, and Asi Basins by using aggregate drought index (ADI), Theoretical and Applied Climatology. 147(3) (2022), 909-924. doi:10.1007/s00704-021-03873-w
  • E. De Martonne, Nouvelle carte mondiale de l'indice d'aridité, Annales de Géographie. 51 (1942), 242–250.
  • W.C. Palmer, Meteorological Drought, Bureau of Meteorology, Research Paper No.451965
  • J.W. Gibbs, V.J. Maher, Rainfall Deciles as Drought Indicators, Bureau of Meteorology. 48 (1967).
  • A. Aydeniz, Tarımda verimliliğin sağlanmasında önemli etken olan su ve sulama durumumuz, Verimlilik Dergisi. 3(1) (1973), 177-199.
  • S. Erinç, Klimatoloji ve Metotları, Climatology and Methods, Alfa Basim Yayım, İstanbul, 1984.
  • T.B. McKee, N.J. Doesken, J. Kleist, The Relationship of Drought Frequency and Duration to Time Scales, Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, USA, 1993, 17.
  • A.J. Keyantash, A.J. Dracup, An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage, Water Resources Research. 40 (2004). doi:10.1029/2003WR002610
  • G. Tsakiris, H. Vangelis, Establishing a Drought Index Incorporating Evapotranpiration, European Water Publications. 9/10 (2005), 3-11.
  • E. Topçu, N. Seçkin, Drought assessment using the reconnaissance drought index (RDI): A case study of Eastern Mediterranean, Seyhan, Ceyhan, and Asi basins of Turkey, Journal of Engineering Research.10(2B) (2022). doi:10.36909/jer.12113
  • I. Nalbantis, Evaluation of a Hydrological Drought Index, European Water Publications. 23/24 (2008), 67-77.
  • N. Limones, M.F.P.- López, J.M. Camarillo-Naranjo, A new index to assess meteorological drought: the Drought Exceedance Probability Index (DEPI), Atmósfera. 35 (2020) 67–88. doi:10.20937/atm.52870.
  • M.F. Pita, Un nouvel indice de sécheresse pour les domains méditerranéens. Application au bassin du Gaudalquivir sudouest de l’Espagne, A new drought index for Mediterranean domains. Application to the Guadalquivir riverbasin in southwestern Spain, Publications de l’Association Internationale de Climatologie. 13 (2000), 225–234.
  • S.M. Vicente-Serrano, S. Beguería, J.I. López-Moreno, A multiscalar drought index sensitive to global warming: the Standardized Precipitation evapotranspiration Index, Journal of Climate. 23 (2009), 1696–1718. doi:10.1175/2009jcli2909.1
  • Wikipedia, Konya'nın ilçeleri, (2025). https://tr.wikipedia.org/wiki/Konya%27n%C4%B1n_il%C3%A7eleri (erişim 03 Mart 2025).
  • W. Weibull, A statistical theory of strength of materials, Ingeniors Vetenskaps Academy Handlingar. 151 (1939), 1-45.
  • Data Portal, PERSIANN, (2024). https://chrsdata.eng.uci.edu/ (erişim 03 Şubat 2025).
  • K. Hsu, X. Gao, S. Sorooshian, H.V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks, Journal of Applied Meteorology. 36(9) (1997), 1176-1190.
  • K. Hsu, H.V. Gupta, X. Gao, S. Sorooshian, Estimation of physical variables from multiple channel remotely sensed imagery using a neural network: Application to rainfall estimation, Water Resources Research. 35(5) (1999), 1605-1618.
  • K.L. Hsu, H. V. Gupta, X. Gao, S. Sorooshian, Rainfall estimation from satellite imagery, Artificial Neural Networks in Hydrology. (2000) 209-234. doi:10.1007/978-94-015-9341-0_12
  • K. Hsu, H.V. Gupta, X. Gao, S. Sorooshian, B. Imam, SOLO-An artificial neural network suitable for hydrologic modelling and analysis, Water Resources Research. 38(12) (2002), 1302.
  • S. Sorooshian, X. Gao, K. Hsu, R.A. Maddox, Y. Hong, B. Imam, H.V. Gupta, Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM Satellite Information, Journal of Climate. 15 (2002), 983-1001.
  • S. Sorooshian, K. Hsu, X. Gao, H.V. Gupta, B. Imam, D. Braithwaite, Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bulletin of the American Meteorology Society. 81(9) (2000), 2035-2046.
  • S. Sorooshian, P. Nguyen, S. Sellars, D. Braithwaite, A. Aghakouchak, K. Hsu, Satellite-based remote sensing estimation of precipitation for early warning systems, Extreme Natural Hazards, Disaster Risks and Societal Implications. (2014), 99-111.
  • P. Nguyen, E.J. Shearer, H. Tran, M. Ombadi, N. Hayatbini, T. Palacios, P. Huynh, G. Updegraff, K. Hsu, B. Kuligowski, W.S. Logan, S. Sorooshian, The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data, Nature Scientific Data. 6 (2019), 180296. doi:10.1038/sdata.2018.296
  • K. Eryürük, Ş. Eryürük, Assessing trends in monthly precipitation and relative humidity: an analysis for climate change reference in Konya, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 105-114. doi:10.47112/neufmbd.2024.35
  • F. Özen, R. Ortaç Kabaoğlu, T.V. Mumcu, Deep learning based temperature and humidity prediction, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 219-229. doi:10.47112/neufmbd.2023.20
  • E. Topçu, F. Karaçor, B. Çırağ, İ. Taşkolu & R. Acar, Drought assessment in the northeastern Aras Basin using multi-parameter aggregate drought index and innovative polygon trend analysis, Earth Science Informatics. 18(3) (2025), 273. doi:10.1007/s12145-025-01797-x
  • F. Kunt, A. Özkan, Evaluation of air quality (PM10 and SO2) parameters: Example of Central Anatolia Region, Necmettin Erbakan University Journal of Science and Engineering. 6(2) (2024), 255- 271. doi:10.47112/neufmbd.2024.47

Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data

Year 2025, Volume: 7 Issue: 2, 309 - 321, 31.08.2025

Abstract

Drought is a climatic phenomenon that poses risks to both the environment and human life. It is characterised by uncertainty regarding its location and duration. Recent analyses of droughts can be conducted over various timeframes using a range of mathematical methods and advancements in technology. The present study is designed to conduct a drought analysis across 31 specified observational points within Konya Province, Türkiye. The data set under scrutiny encompasses monthly total precipitation values recorded from March 2000 to February 2025, obtained from the PERSIANN system (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). The monthly precipitation totals from the designated points were then used as input parameters for the Drought Exceedance Probability Index (DEPI). The findings indicate that the year 2006 was marked by severe drought conditions, particularly in the region encompassing Konya Province, while 2019 was characterised by wet conditions. The analysis revealed that wet circumstances were encountered more frequently, with a frequency value of 50.17%.

References

  • N.K. Mallenahalli, Comparison of parametric and nonparametric standardized precipitation index for detecting meteorological drought over the Indian region, Theoretical and Applied Climatology. 142 (2020), 219–236. doi:10.1007/s00704-020-03296-z
  • E. Topçu, Testing of Drought Exceedance Probability Index (DEPI) for Turkey using PERSIANN data for 2000-2021 period, Italian Journal of Agrometeorology. 2 (2021), 15-28. doi:10.36253/ijam-1308
  • D.A. Wilhite, M.H. Glantz, Understanding: the drought phenomenon: the role of definitions, Water International. 10(3) (1985), 111-120. doi:10.1080/02508068508686328
  • E. Topçu, N. Seçkin N, Drought Analysis of the Seyhan Basin by using Standardized Precipitation Index (SPI) and L-Moments, Journal of Agricultural Science. 22 (2016), 196-215. doi:10.1501/Tarimbil_0000001381
  • E. Topçu, Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach, Natural Hazards. 112(1) (2022), 697-723. doi:10.1007/s11069-021-05201-x
  • E. Topçu, F. Karaçor, A comparative investigation on the applicability of the actual precipitation index (API) with the standardized precipitation index (SPI): the case study of Aras Basin, Turkey, Theoretical and Applied Climatology. 154(1) (2023), 29-42. doi:10.1007/s00704-023-04499-w
  • E. Topçu, F. Karaçor, Erzurum istasyonunun standartlaştırılmış yağış evapotranspirasyon indeksi ve bütünleşik kuraklık indeksi kullanılarak kuraklık analizi, Politeknik Dergisi. 24(2) (2021). doi:10.2339/politeknik.682168
  • E. Topçu, N. Seçkin, N.A. Haktanır, Drought analyses of Eastern Mediterranean, Seyhan, Ceyhan, and Asi Basins by using aggregate drought index (ADI), Theoretical and Applied Climatology. 147(3) (2022), 909-924. doi:10.1007/s00704-021-03873-w
  • E. De Martonne, Nouvelle carte mondiale de l'indice d'aridité, Annales de Géographie. 51 (1942), 242–250.
  • W.C. Palmer, Meteorological Drought, Bureau of Meteorology, Research Paper No.451965
  • J.W. Gibbs, V.J. Maher, Rainfall Deciles as Drought Indicators, Bureau of Meteorology. 48 (1967).
  • A. Aydeniz, Tarımda verimliliğin sağlanmasında önemli etken olan su ve sulama durumumuz, Verimlilik Dergisi. 3(1) (1973), 177-199.
  • S. Erinç, Klimatoloji ve Metotları, Climatology and Methods, Alfa Basim Yayım, İstanbul, 1984.
  • T.B. McKee, N.J. Doesken, J. Kleist, The Relationship of Drought Frequency and Duration to Time Scales, Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, USA, 1993, 17.
  • A.J. Keyantash, A.J. Dracup, An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage, Water Resources Research. 40 (2004). doi:10.1029/2003WR002610
  • G. Tsakiris, H. Vangelis, Establishing a Drought Index Incorporating Evapotranpiration, European Water Publications. 9/10 (2005), 3-11.
  • E. Topçu, N. Seçkin, Drought assessment using the reconnaissance drought index (RDI): A case study of Eastern Mediterranean, Seyhan, Ceyhan, and Asi basins of Turkey, Journal of Engineering Research.10(2B) (2022). doi:10.36909/jer.12113
  • I. Nalbantis, Evaluation of a Hydrological Drought Index, European Water Publications. 23/24 (2008), 67-77.
  • N. Limones, M.F.P.- López, J.M. Camarillo-Naranjo, A new index to assess meteorological drought: the Drought Exceedance Probability Index (DEPI), Atmósfera. 35 (2020) 67–88. doi:10.20937/atm.52870.
  • M.F. Pita, Un nouvel indice de sécheresse pour les domains méditerranéens. Application au bassin du Gaudalquivir sudouest de l’Espagne, A new drought index for Mediterranean domains. Application to the Guadalquivir riverbasin in southwestern Spain, Publications de l’Association Internationale de Climatologie. 13 (2000), 225–234.
  • S.M. Vicente-Serrano, S. Beguería, J.I. López-Moreno, A multiscalar drought index sensitive to global warming: the Standardized Precipitation evapotranspiration Index, Journal of Climate. 23 (2009), 1696–1718. doi:10.1175/2009jcli2909.1
  • Wikipedia, Konya'nın ilçeleri, (2025). https://tr.wikipedia.org/wiki/Konya%27n%C4%B1n_il%C3%A7eleri (erişim 03 Mart 2025).
  • W. Weibull, A statistical theory of strength of materials, Ingeniors Vetenskaps Academy Handlingar. 151 (1939), 1-45.
  • Data Portal, PERSIANN, (2024). https://chrsdata.eng.uci.edu/ (erişim 03 Şubat 2025).
  • K. Hsu, X. Gao, S. Sorooshian, H.V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks, Journal of Applied Meteorology. 36(9) (1997), 1176-1190.
  • K. Hsu, H.V. Gupta, X. Gao, S. Sorooshian, Estimation of physical variables from multiple channel remotely sensed imagery using a neural network: Application to rainfall estimation, Water Resources Research. 35(5) (1999), 1605-1618.
  • K.L. Hsu, H. V. Gupta, X. Gao, S. Sorooshian, Rainfall estimation from satellite imagery, Artificial Neural Networks in Hydrology. (2000) 209-234. doi:10.1007/978-94-015-9341-0_12
  • K. Hsu, H.V. Gupta, X. Gao, S. Sorooshian, B. Imam, SOLO-An artificial neural network suitable for hydrologic modelling and analysis, Water Resources Research. 38(12) (2002), 1302.
  • S. Sorooshian, X. Gao, K. Hsu, R.A. Maddox, Y. Hong, B. Imam, H.V. Gupta, Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM Satellite Information, Journal of Climate. 15 (2002), 983-1001.
  • S. Sorooshian, K. Hsu, X. Gao, H.V. Gupta, B. Imam, D. Braithwaite, Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bulletin of the American Meteorology Society. 81(9) (2000), 2035-2046.
  • S. Sorooshian, P. Nguyen, S. Sellars, D. Braithwaite, A. Aghakouchak, K. Hsu, Satellite-based remote sensing estimation of precipitation for early warning systems, Extreme Natural Hazards, Disaster Risks and Societal Implications. (2014), 99-111.
  • P. Nguyen, E.J. Shearer, H. Tran, M. Ombadi, N. Hayatbini, T. Palacios, P. Huynh, G. Updegraff, K. Hsu, B. Kuligowski, W.S. Logan, S. Sorooshian, The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data, Nature Scientific Data. 6 (2019), 180296. doi:10.1038/sdata.2018.296
  • K. Eryürük, Ş. Eryürük, Assessing trends in monthly precipitation and relative humidity: an analysis for climate change reference in Konya, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 105-114. doi:10.47112/neufmbd.2024.35
  • F. Özen, R. Ortaç Kabaoğlu, T.V. Mumcu, Deep learning based temperature and humidity prediction, Necmettin Erbakan University Journal of Science and Engineering. 5(2) (2023), 219-229. doi:10.47112/neufmbd.2023.20
  • E. Topçu, F. Karaçor, B. Çırağ, İ. Taşkolu & R. Acar, Drought assessment in the northeastern Aras Basin using multi-parameter aggregate drought index and innovative polygon trend analysis, Earth Science Informatics. 18(3) (2025), 273. doi:10.1007/s12145-025-01797-x
  • F. Kunt, A. Özkan, Evaluation of air quality (PM10 and SO2) parameters: Example of Central Anatolia Region, Necmettin Erbakan University Journal of Science and Engineering. 6(2) (2024), 255- 271. doi:10.47112/neufmbd.2024.47
There are 36 citations in total.

Details

Primary Language English
Subjects Water Resources Engineering
Journal Section Research Article
Authors

Fatih Karaçor 0000-0003-1201-7857

Emre Topçu 0000-0003-0728-7035

Publication Date August 31, 2025
Submission Date March 4, 2025
Acceptance Date April 29, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Karaçor, F., & Topçu, E. (2025). Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(2), 309-321.
AMA Karaçor F, Topçu E. Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data. NEJSE. August 2025;7(2):309-321.
Chicago Karaçor, Fatih, and Emre Topçu. “Drought Analysis of Konya Province Using Drought Exceedance Probability Index (DEPI) With Remote Sensing Precipitation Data”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 2 (August 2025): 309-21.
EndNote Karaçor F, Topçu E (August 1, 2025) Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 2 309–321.
IEEE F. Karaçor and E. Topçu, “Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data”, NEJSE, vol. 7, no. 2, pp. 309–321, 2025.
ISNAD Karaçor, Fatih - Topçu, Emre. “Drought Analysis of Konya Province Using Drought Exceedance Probability Index (DEPI) With Remote Sensing Precipitation Data”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/2 (August2025), 309-321.
JAMA Karaçor F, Topçu E. Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data. NEJSE. 2025;7:309–321.
MLA Karaçor, Fatih and Emre Topçu. “Drought Analysis of Konya Province Using Drought Exceedance Probability Index (DEPI) With Remote Sensing Precipitation Data”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 2, 2025, pp. 309-21.
Vancouver Karaçor F, Topçu E. Drought Analysis of Konya Province using Drought Exceedance Probability Index (DEPI) with Remote Sensing Precipitation Data. NEJSE. 2025;7(2):309-21.