Research Article
BibTex RIS Cite

Yapısal Çelik ve Bakır Alaşımlarında Çentik Darbe Testinin Sonlu Elemanlar Yöntemiyle Analizi

Year 2025, Volume: 7 Issue: 2, 331 - 348, 31.08.2025

Abstract

Bu çalışmada, yapısal çelik ve bakır alaşımlarının çentik darbe davranışları, gelişmiş sayısal yöntemlerle detaylı biçimde incelenmiştir. ASTM E23 standardına göre boyutlandırılan Charpy V-çentikli numunelerin (uzunluk=55 mm, genişlik=10 mm, kalınlık=10 mm; çentik derinliği=2 mm, kök yarıçapı=0,25 mm) üç boyutlu katı modelleri SolidWorks yazılımında oluşturulmuş ve ANSYS programında 19.088 eleman ve 22.484 düğümden oluşan yüksek hassasiyetli bir sonlu eleman modeliyle analiz edilmiştir. Malzemelerin doğrusal olmayan davranışı, gerinim hızının etkilerini de kapsayan Cowper-Symonds modeli (çelikte C=40,4 s⁻¹, bakır alaşımında C=1169 s⁻¹) ile bilineer izotropik pekleşme kullanılarak tanımlanmıştır. Darbe hızları, enerji korunumu ilkesine göre hesaplanmış (300 J için 5,42 m/s, 150 J için 3,83 m/s) ve sürtünmeli temas koşulları (μ=0,2) gerçekçi biçimde tanımlanarak simülasyonlar gerçekleştirilmiştir. Analizler, maksimum gerilmelerin çentik bölgesinde yoğunlaştığını, yapısal çelikte 6438,8 MPa, bakır alaşımında ise 839,61 MPa’ya ulaştığını ortaya koymuştur. Bu değerler, her iki malzemenin de dinamik akma dayanımlarını (çelik için 485 MPa, bakır alaşımı için 252 MPa) önemli ölçüde aşarak, sırasıyla 0,075 ve 0,300 gibi oldukça düşük dinamik emniyet katsayılarına sebep olmuştur. Kırılma anında oluşan maksimum plastik deformasyon, yapısal çelikte 34 mm, bakır alaşımında ise 32 mm olarak belirlenmiş olup, çeliğin darbe yüklemesi altında daha üstün enerji emme kapasitesine sahip olduğu (287 J çelik, 142 J bakır alaşımı) görülmüştür. Elde edilen sonuçlar literatürdeki deneysel verilerle karşılaştırılmış ve yapısal çelikte %4,4, bakır alaşımında ise %5,2’lik düşük hata oranlarıyla doğrulanmıştır. Sonuç olarak, bu çalışma, çentik darbe etkisi altında dinamik kırılma mekanizmalarının, gerilme dalga yayılımının ve deformasyon davranışlarının doğru bir şekilde değerlendirilmesinde sonlu elemanlar yönteminin etkinliğini vurgulamakta, malzeme seçiminde ve yapı güvenliğinin artırılmasında kritik öneme sahip detaylı bilgiler sağlamaktadır.

References

  • Ş. Çetin, H.B. Karadağ, Investigation of the impact resistance of laminated composites, Aerospace Research Letters (ASREL). 2 (2023), 114-127. doi:10.56753/asrel.2023.2.5.
  • T.H. Kori, F.T. Kassaye, A. Kozłowska, A. Grajcar, Numerical modeling of charpy impact toughness behavior and stress distribution of quenching and partitioning steel, Symmetry. 17 (2025), 17-53. doi:10.3390/sym17010053.
  • I. Lee, J.W. Merickel, Y.K. Sreenivasulu, F. Xu, Y. Tang, J.E. Rittenhouse, A. Vakanski, R. Song, Comprehensive toughness dataset of nuclear reactor structural materials using charpy v-notch impact testing, Scientific Data. 12 (2025). doi:10.1038/s41597-025-04823-1.
  • W.J. Wong, C.L. Walters, Damage mechanics model for correlating notch toughness in charpy impact tests with fracture toughness in cracked static fracture tests, Engineering Fracture Mechanics. 320 (2025), .doi:10.1016/j.engfracmech.2025.111043.
  • O. Zamzam, M. Abdelaziz, T. Elnady, A.A. Ramzy, A.A. Abd El-Wahab, Structural analysis of an electric vehicle chassis using finite element analysis, Journal of Engineering Advances and Technologies for Sustainable Applications. 1 (2025), 48-54. doi:10.21608/jeatsa.2025.427801.
  • V.S. Barbosa, L.A.C. de Godois, K.E. Bianchi, C. Ruggieri, Charpy impact energy correlation with fracture toughness for low alloy structural steel welds, Theoretical and Applied Fracture Mechanics. 113 (2021). doi:10.1016/j.tafmec.2021.102934.
  • A. Rossoll, C. Berdin, C. Prioul, Determination of the fracture toughness of a low alloy steel by the instrumented charpy impact test, International Journal of Fracture. 115 (2002), 205-226.
  • M.Y. Kayacan, M.S. Yılmaz, M. Alshihabi, Impact and modal characteristics of steels manufactured by a novel hybrid selective laser melting method, Journal of Vibration Engineering and Technologies. 12 (2024), 1907-1928. doi:10.1007/s42417-024-01510-0.
  • W. Xu, W. Zhang, X. Liu, Y. Qu, Y. Hao, S. Liu, G. Li, Effect of copper on the microstructure and fracture toughness of heavy -section pearlitic ductile iron, Journal of Alloys and Compounds. (2025), 180440. doi:10.1016/j.jallcom.2025.180440.
  • K. Jin, J. Li, C. Li, Q. Lu, Z. Xu, Y. You, P. Gao, L. Liu, J. Yi, J. Eckert, Enhanced strength-ductility synergy in an ultra-strong copper alloy via coherent nanoprecipitates and stress-induced twinning, Materials Research Letters. 12 (2024), 281-289. doi:10.1080/21663831.2024.2319927.
  • Q. Mao, Y. Liu, Y. Zhao, A review on copper alloys with high strength and high electrical conductivity, Journal of Alloys and Compounds. 990 (2024), 174456. doi:10.1016/j.jallcom.2024.174456.
  • A. Vahedi Nemani, M. Ghaffari, K. Sabet Bokati, N. Valizade, E. Afshari, A. Nasiri, Advancements in additive manufacturing for copper-based alloys and composites: A comprehensive review, Journal of Manufacturing and Materials Processing. 8 (2024), 54. doi:10.3390/jmmp8020054.
  • M. Park, G.H. Lee, B. Kim, S. Noh, J.B. Jeon, C. Lee, B.J. Kim, Application of Surface-Cracking process to improve impact toughness of High-Strength BCC steel at low temperatures, Crystals. 15 (2025), 69. doi:10.3390/cryst15010069.
  • F. Yanagimoto, T. He, K. Shibanuma, The state-of-art in studies on brittle crack arrest in steel, Engineering Fracture Mechanics. 323 (2025). doi:10.1016/j.engfracmech.2025.111132.
  • K. J. Nathan, Machine Learning Methods for Constructing Dynamic Models from Data, içinde: R. Timon (Ed.), Machine Learning in Modeling and Simulation Methods and Applications, Springer, 2022: pp. 148-178. doi:10.1007/978-3-031-36644-4.
  • H. Li, J. Li, H. Yuan, A review of the extended finite element method on macrocrack and microcrack growth simulations, Theoretical and Applied Fracture Mechanics. 97 (2018), 236-249. doi:10.1016/j.tafmec.2018.08.008.
  • W.-Y. Wang, J. Yin, Z. Chai, X. Chen, W. Zhao, J. Lu, F. Sun, Q. Jia, X. Gao, B. Tang, X. Hui, H. Song, F. Xue, Z.-K. Liu, J. Li, Big data-assisted digital twins for the smart design and manufacturing of advanced materials: from atoms to products, Journal of Materials Informatics. (2022). doi:10.20517/jmi.2021.11.
  • V. Yousefi Mehr, M.R. Toroghinejad, Mode Ⅰ fracture analysis of aluminum-copper bimetal composite using finite element method, Heliyon. 10 (2024). doi:10.1016/j.heliyon.2024.e26329.
  • T. Dağ, N. Yildirim, Y. Kepir, M. Uyaner, numerical simulation of low-velocity impact behavior on Eglass epoxy laminates, Aerospace Research Letters (ASREL). 1 (2022). doi:10.56753/asrel.2022.1.1.
  • A. Kocamer, M. Uzun, S. Çoban, Static Analysis and design of fixed-wing tactical unmanned aerial vehicle (TUAV) retractable main landing gear, Aerospace Research Letters (ASREL). 1 (2022), 125-131. doi:10.56753/asrel.2022.2.5.
  • D. Benasciutti, F. Sherratt, A. Cristofori, Recent developments in frequency domain multi-axial fatigue analysis, International Journal of Fatigue. 91 (2016), 397-413. doi:10.1016/j.ijfatigue.2016.04.012.
  • I. Levadnyi, F. Liu, Y. Gu, Identification of material parameters at high strain rates using ballistic impact tests and inverse finite element analysis, AIP Advances. 14 (2024). doi:10.1063/5.0197149.
  • X. Lu, Y. He, W. Zheng, Design of advanced steels by integrated computational materials engineering, Materials Genome Engineering Advances. 2 (2024). doi:10.1002/mgea.36.
  • Z.W. Wang, D.M. Li, Y.F. Zhong, Y.K. Liu, Y.N. Shao, Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics, Mathematics. 12 (2024). doi:10.3390/math12243881.
  • M. Eriksson, M. Nyberg, M. Andersen, J. Tychsen, J. Nielsen, Validated methodology for assessment of welded steel structures by nonlinear finite element analysis, International Journal of Offshore and Polar Engineering. 34 (2024), 191-198. doi:10.17736/ijope.2024.ty14.
  • ASTM E23-18, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2018.
  • P. Verleysen, J. Degrieck, T. Verstraete, J. Van Slycken, Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials, Experimental Mechanics. 48 (2008), 587-598. doi:10.1007/s11340-008-9149-x.
  • G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics. 21 (1985), 31-48. doi:10.1016/0013-7944(85)90052-9.
  • T. Børvik, O.S. Hopperstad, T. Berstad, M. Langseth, A computational model of viscoplasticity and ductile damage for impact and penetration, European Journal of Mechanics - A/Solids. 20 (2001), 685-712. doi:10.1016/S0997-7538(01)01157-3.
  • T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, 2014.

Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys

Year 2025, Volume: 7 Issue: 2, 331 - 348, 31.08.2025

Abstract

This study investigates the notch impact behavior of structural steel and copper alloys using advanced numerical simulation based on the finite element method (FEM). Charpy V-notch specimens conforming precisely to ASTM E23 standards (L=55 mm, W=10 mm, B=10 mm; notch depth=2 mm, root radius=0.25 mm) were accurately modeled in SolidWorks and subjected to explicit dynamic analyses within the ANSYS environment using a refined mesh comprising 19,088 elements and 22,484 nodes. Nonlinear material behavior was incorporated using bilinear isotropic hardening combined with strain-rate sensitivity modeled through the Cowper-Symonds relationship (C=40.4 s⁻¹ for steel and 1169 s⁻¹ for copper alloys). Realistic impact velocities of 5.42 m/s (300 J) and 3.83 m/s (150 J) were calculated based on energy conservation principles, and frictional contact interactions (μ=0.2) were rigorously defined. Results indicate pronounced stress concentrations localized around the notch region, where peak von Mises stresses were recorded as 6438.8 MPa in structural steel and 839.61 MPa in copper alloy, significantly surpassing their respective dynamic yield strengths (485 MPa for steel, 252 MPa for copper alloy). These stress levels corresponded to notably low dynamic safety factors of approximately 0.075 for structural steel and 0.300 for copper alloy, suggesting imminent fracture initiation under impact loading. Furthermore, structural steel specimens exhibited greater maximum plastic deformation (34 mm) compared to copper alloys (32 mm), highlighting steel's superior impact toughness and energy absorption capabilities (287 J vs. 142 J). Validation against previously reported experimental data demonstrated excellent agreement, with discrepancies limited to 4.4% for structural steel and 5.2% for copper alloy. This comprehensive numerical investigation emphasizes the efficacy of finite element-based approaches for accurately capturing dynamic fracture mechanisms, transient stress waves, and deformation behaviors, providing crucial insights for optimizing material selection and enhancing structural safety against impact loading.

Ethical Statement

This study is an original research article designed and developed by the authors.

Thanks

The authors are very grateful to Karamanoğlu Mehmetbey University for their support in the data collection process for this study and for providing the ANSYS Workbench program.

References

  • Ş. Çetin, H.B. Karadağ, Investigation of the impact resistance of laminated composites, Aerospace Research Letters (ASREL). 2 (2023), 114-127. doi:10.56753/asrel.2023.2.5.
  • T.H. Kori, F.T. Kassaye, A. Kozłowska, A. Grajcar, Numerical modeling of charpy impact toughness behavior and stress distribution of quenching and partitioning steel, Symmetry. 17 (2025), 17-53. doi:10.3390/sym17010053.
  • I. Lee, J.W. Merickel, Y.K. Sreenivasulu, F. Xu, Y. Tang, J.E. Rittenhouse, A. Vakanski, R. Song, Comprehensive toughness dataset of nuclear reactor structural materials using charpy v-notch impact testing, Scientific Data. 12 (2025). doi:10.1038/s41597-025-04823-1.
  • W.J. Wong, C.L. Walters, Damage mechanics model for correlating notch toughness in charpy impact tests with fracture toughness in cracked static fracture tests, Engineering Fracture Mechanics. 320 (2025), .doi:10.1016/j.engfracmech.2025.111043.
  • O. Zamzam, M. Abdelaziz, T. Elnady, A.A. Ramzy, A.A. Abd El-Wahab, Structural analysis of an electric vehicle chassis using finite element analysis, Journal of Engineering Advances and Technologies for Sustainable Applications. 1 (2025), 48-54. doi:10.21608/jeatsa.2025.427801.
  • V.S. Barbosa, L.A.C. de Godois, K.E. Bianchi, C. Ruggieri, Charpy impact energy correlation with fracture toughness for low alloy structural steel welds, Theoretical and Applied Fracture Mechanics. 113 (2021). doi:10.1016/j.tafmec.2021.102934.
  • A. Rossoll, C. Berdin, C. Prioul, Determination of the fracture toughness of a low alloy steel by the instrumented charpy impact test, International Journal of Fracture. 115 (2002), 205-226.
  • M.Y. Kayacan, M.S. Yılmaz, M. Alshihabi, Impact and modal characteristics of steels manufactured by a novel hybrid selective laser melting method, Journal of Vibration Engineering and Technologies. 12 (2024), 1907-1928. doi:10.1007/s42417-024-01510-0.
  • W. Xu, W. Zhang, X. Liu, Y. Qu, Y. Hao, S. Liu, G. Li, Effect of copper on the microstructure and fracture toughness of heavy -section pearlitic ductile iron, Journal of Alloys and Compounds. (2025), 180440. doi:10.1016/j.jallcom.2025.180440.
  • K. Jin, J. Li, C. Li, Q. Lu, Z. Xu, Y. You, P. Gao, L. Liu, J. Yi, J. Eckert, Enhanced strength-ductility synergy in an ultra-strong copper alloy via coherent nanoprecipitates and stress-induced twinning, Materials Research Letters. 12 (2024), 281-289. doi:10.1080/21663831.2024.2319927.
  • Q. Mao, Y. Liu, Y. Zhao, A review on copper alloys with high strength and high electrical conductivity, Journal of Alloys and Compounds. 990 (2024), 174456. doi:10.1016/j.jallcom.2024.174456.
  • A. Vahedi Nemani, M. Ghaffari, K. Sabet Bokati, N. Valizade, E. Afshari, A. Nasiri, Advancements in additive manufacturing for copper-based alloys and composites: A comprehensive review, Journal of Manufacturing and Materials Processing. 8 (2024), 54. doi:10.3390/jmmp8020054.
  • M. Park, G.H. Lee, B. Kim, S. Noh, J.B. Jeon, C. Lee, B.J. Kim, Application of Surface-Cracking process to improve impact toughness of High-Strength BCC steel at low temperatures, Crystals. 15 (2025), 69. doi:10.3390/cryst15010069.
  • F. Yanagimoto, T. He, K. Shibanuma, The state-of-art in studies on brittle crack arrest in steel, Engineering Fracture Mechanics. 323 (2025). doi:10.1016/j.engfracmech.2025.111132.
  • K. J. Nathan, Machine Learning Methods for Constructing Dynamic Models from Data, içinde: R. Timon (Ed.), Machine Learning in Modeling and Simulation Methods and Applications, Springer, 2022: pp. 148-178. doi:10.1007/978-3-031-36644-4.
  • H. Li, J. Li, H. Yuan, A review of the extended finite element method on macrocrack and microcrack growth simulations, Theoretical and Applied Fracture Mechanics. 97 (2018), 236-249. doi:10.1016/j.tafmec.2018.08.008.
  • W.-Y. Wang, J. Yin, Z. Chai, X. Chen, W. Zhao, J. Lu, F. Sun, Q. Jia, X. Gao, B. Tang, X. Hui, H. Song, F. Xue, Z.-K. Liu, J. Li, Big data-assisted digital twins for the smart design and manufacturing of advanced materials: from atoms to products, Journal of Materials Informatics. (2022). doi:10.20517/jmi.2021.11.
  • V. Yousefi Mehr, M.R. Toroghinejad, Mode Ⅰ fracture analysis of aluminum-copper bimetal composite using finite element method, Heliyon. 10 (2024). doi:10.1016/j.heliyon.2024.e26329.
  • T. Dağ, N. Yildirim, Y. Kepir, M. Uyaner, numerical simulation of low-velocity impact behavior on Eglass epoxy laminates, Aerospace Research Letters (ASREL). 1 (2022). doi:10.56753/asrel.2022.1.1.
  • A. Kocamer, M. Uzun, S. Çoban, Static Analysis and design of fixed-wing tactical unmanned aerial vehicle (TUAV) retractable main landing gear, Aerospace Research Letters (ASREL). 1 (2022), 125-131. doi:10.56753/asrel.2022.2.5.
  • D. Benasciutti, F. Sherratt, A. Cristofori, Recent developments in frequency domain multi-axial fatigue analysis, International Journal of Fatigue. 91 (2016), 397-413. doi:10.1016/j.ijfatigue.2016.04.012.
  • I. Levadnyi, F. Liu, Y. Gu, Identification of material parameters at high strain rates using ballistic impact tests and inverse finite element analysis, AIP Advances. 14 (2024). doi:10.1063/5.0197149.
  • X. Lu, Y. He, W. Zheng, Design of advanced steels by integrated computational materials engineering, Materials Genome Engineering Advances. 2 (2024). doi:10.1002/mgea.36.
  • Z.W. Wang, D.M. Li, Y.F. Zhong, Y.K. Liu, Y.N. Shao, Review of Experimental, Theoretical and Numerical Advances in Multi-Crack Fracture Mechanics, Mathematics. 12 (2024). doi:10.3390/math12243881.
  • M. Eriksson, M. Nyberg, M. Andersen, J. Tychsen, J. Nielsen, Validated methodology for assessment of welded steel structures by nonlinear finite element analysis, International Journal of Offshore and Polar Engineering. 34 (2024), 191-198. doi:10.17736/ijope.2024.ty14.
  • ASTM E23-18, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2018.
  • P. Verleysen, J. Degrieck, T. Verstraete, J. Van Slycken, Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials, Experimental Mechanics. 48 (2008), 587-598. doi:10.1007/s11340-008-9149-x.
  • G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics. 21 (1985), 31-48. doi:10.1016/0013-7944(85)90052-9.
  • T. Børvik, O.S. Hopperstad, T. Berstad, M. Langseth, A computational model of viscoplasticity and ductile damage for impact and penetration, European Journal of Mechanics - A/Solids. 20 (2001), 685-712. doi:10.1016/S0997-7538(01)01157-3.
  • T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, 2014.
There are 30 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Sümeyye Erdem Korkmaz 0000-0002-5518-2716

Esma Gavgalı 0000-0003-0954-1957

Publication Date August 31, 2025
Submission Date July 11, 2025
Acceptance Date August 28, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Erdem Korkmaz, S., & Gavgalı, E. (2025). Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(2), 331-348.
AMA Erdem Korkmaz S, Gavgalı E. Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys. NEJSE. August 2025;7(2):331-348.
Chicago Erdem Korkmaz, Sümeyye, and Esma Gavgalı. “Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 2 (August 2025): 331-48.
EndNote Erdem Korkmaz S, Gavgalı E (August 1, 2025) Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 2 331–348.
IEEE S. Erdem Korkmaz and E. Gavgalı, “Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys”, NEJSE, vol. 7, no. 2, pp. 331–348, 2025.
ISNAD Erdem Korkmaz, Sümeyye - Gavgalı, Esma. “Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/2 (August2025), 331-348.
JAMA Erdem Korkmaz S, Gavgalı E. Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys. NEJSE. 2025;7:331–348.
MLA Erdem Korkmaz, Sümeyye and Esma Gavgalı. “Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 2, 2025, pp. 331-48.
Vancouver Erdem Korkmaz S, Gavgalı E. Finite Element Analysis of Notch Impact Test in Structural Steel and Copper Alloys. NEJSE. 2025;7(2):331-48.