Research Article
BibTex RIS Cite

Viscosities and FTIR Analysis of Bio-asphalt Binders Obtained by Using Distillation Residues of Different Pyrolytic Bio-oils

Year 2025, Volume: 7 Issue: 3, 349 - 360

Abstract

In this study, bio-asphalt binders were obtained by using the distillation residues of three different pyrolytic bio-oils produced from oak sawdust, tea wastes and pine cone biomasses. Firstly, three different bio-oils were produced from three different biomasses with pyrolysis method by using nitrogen gas in an oxygen-free environment. Light products were separated by subjecting the produced pyrolytic bio-oils to the distillation test. Distillation residues obtained from three different pyrolytic bio-oils were added separately to 50/70 pure bitumen at the rate of 10%, mixed at 135±1°C temperature, at 1200 rpm for 30 min and three different bio-asphalt binders were obtained. The consistencies, temperature sensitivities and viscosity values of the binders were determined by using penetration, softening point, PI (penetration index) and rotational viscometer (RV) tests. In addition, the functional groups of all binders obtained from the FTIR (Fourier Transform Infrared) Spectroscopy analysis results were determined. According to the analysis results, comparing with pure bitumen, it was determined that the intensities of the peaks around the 1739,21 cm-1 and 1216,56 cm-1 were higher in bio-asphalt binders. It was found that, the softening points of the bio-asphalt binders doped with bio-oil distillation residues from oak sawdust, pine cone and tea wastes were approximately 8%, 10% and 12% lower than the softening point of 50/70 pure bitumen, respectively. Additionally, in this study, it was found that the bio-asphalt binder doped with 10% tea waste pyrolytic bio-oil distillation residue was the softest consistency binder and had the lowest viscosity value.

References

  • R.N. Hunter, A. Self, J. Read, The Shell Bitumen Handbook, 6th ed., Shell International Petroleum Company Ltd., London, UK, 2015. ISBN: 978-0-7277-5837-8.
  • J. Pais, C.R. Santos, M. Cabette, L. Hilliou, J. Ribeiro, H. Wang, M.R.M. Hasan, Feasibility of using bio-oil from biodiesel production for bio-bitumen creation, Road Materials and Pavement Design. 24 (S1) (2023), 209-228. doi: 10.1080/14680629.2023.2180305
  • L.P. Ingrassia, X. Lu, G. Ferrotti, F. Canestrari, Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: towards more sustainable materials in road pavements, Journal of Traffic and Transportation Engineering (English Edition). 7 (2) (2020), 192-204. doi: 10.1016/j.jtte.2019.04.003
  • S. Lv, J. Liu, X. Peng, M. Jiang, Laboratory experiments of various bio-asphalt on rheological and microscopic properties, Journal of Cleaner Production. 320 (2021), 128770. doi: 10.1016/j.jclepro.2021.128770
  • X. Cao, Y. Quan, M. Deng, B. Tang, and L. Kong, Progress and perspective of bio-asphalt preparation, structural characterization, and rheological properties, Energy Fuels. 38 (2024), 1657-1675. doi:10.1021/acs.energyfuels.3c04021
  • N. Su, F. Xiao, J. Wang, L. Cong, S. Amirkhanian, Productions and applications of bio-asphalts-Review, Construction and Building Materials. 183 (2018), 578–591. doi: 10.1016/j.conbuildmat.2018.06.118
  • Y. Ding, B. Shan, X. Cao, Y.Liu, M. Huang, B. Tang, Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose, Journal of Cleaner Production. 288 (2021), 125586. doi: 10.1016/j.jclepro.2020.125586
  • M. Deng, X. Cao, Z. Li, X. Li, X. Yang, B. Tang, Investigating properties and intermolecular interactions of sludge bio-oil modified asphalt, Journal of Molecular Liquids. 360 (2022), 119415. doi: 10.1016/j.molliq.2022.119415
  • S. Algarni, V. Tirth, T. Alqahtani, S. Alshehery, P. Kshirsagar, Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development, Sustainable Energy Technologies and Assessments. 56 (2023), 103098. doi: 10.1016/j.seta.2023.103098
  • S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassilev, An overview of the chemical composition of biomass, Fuel. 89 (2010), 913–933. doi:10.1016/j.fuel.2009.10.022
  • A.V. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal. 91 (2003), 87–102. doi: 10.1016/S1385-8947(02)00142-0
  • B. Akgayev, S. Akbayrak, M. Yılmaz, M.S. Büker, V. Ünsür, Assessing the feasibility of photovoltaic systems in Türkiye: Technical and economic analysis of on-grid, off-grid, and utility-scale PV installations, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 69-92. doi: 10.47112/neufmbd.2024.33
  • E. Hançer Güleryüz, D.N. Özen, Exergo-economic analysis of an geothermal based organic rankine cycle, Necmettin Erbakan University Journal of Science and Engineering. 6(2) (2024), 312-335. doi: 10.47112/neufmbd.2024.50
  • R. Büyükzeren, M.N. Kaya, A.A. Bacakoğlu, M. Uçar, H.B. Altıntaş, A. Öztürk, A.Y. Bilici, Investigation of the tower height and turbulence ıntensity on horizontal axis wind turbines, Necmettin Erbakan University Journal of Science and Engineering. 6(3) (2024), 566-582. doi: 10.47112/neufmbd.2024.66
  • A. Demirbaş, The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis, Fuel Processing Technology. 88 (2007), 591–597. doi: 10.1016/j.fuproc.2007.01.010
  • K. Drugkar, W. Rathod, T. Sharma, A. Sharma, J. Joshi, V.K. Pareek, L. Ledwani, U. Diwekar, Advanced separation strategies for up-gradation of bio-oil into value-added chemicals: A comprehensive review, Separation and Purification Technology. 283 (2022), 120149. doi: 10.1016/j.seppur.2021.120149.
  • P. Adams, T. Bridgwater, A. Lea-Langton, A. Ross, I. Watson, Chapter 8-Biomass Conversion Technologies, P. Thornley and P. Adams (Ed.), Greenhouse Gas Balances of Bioenergy Systems, Elsevier, 2018: ss. 107-139. doi:10.1016/B978-0-08-101036-5.00008-2
  • R.A. Kinsara, A. Demirbaş, Upgrading of crude oil via distillation processes, Petroleum Science and Technology. 34(14) (2016), 1300-1306. doi: 10.1080/10916466.2016.1200080
  • X. Guo, S. Wang, Z. Guo, Q. Liu, Z. Luo, K. Cen, Pyrolysis characteristics of bio-oil fractions separated by molecular distillation, Applied Energy. 87 (2010), 2892–2898. doi: 10.1016/j.apenergy.2009.10.004
  • Y.H. Chan, S.K. Loh, B.L.F. Chin, C.L. Yiin, B.S. How, K.W. Cheah, M.K. Wong, A.C.M. Loy, Y.L. Gwee, S.L.Y. Lo, S. Yusup, S.S. Lam, Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects, Chemical Engineering Journal. 397 (2020), 125406. doi: 10.1016/j.cej.2020.125406
  • S. Terzi, M. Saltan, K. Armağan, A.K. Kurtman, Ş. Karahançer, E. Erişkin, V.E. Uz, Bitumen expanding using bio-oil product of rose pulp’s pyrolysis process, Construction and Building Materials. 249 (2020), 118721. doi: 10.1016/j.conbuildmat.2020.118721
  • B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, Second Edition, CRC Press Taylor & Francis Group, 2011.
  • ASTM-D5, Standard Test Method for Penetration of Bituminous Materials, West Conshohocken, 2006.
  • ASTM-D36, Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), West Conshohocken, 2006.
  • ASTM-D-4402, Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, 2002.
  • J.P. Zaniewski, M.E. Pumphrey, Evaluation of performance graded asphalt binder equipment and testing protocol, Technical Report, West Virginia Division of Highways, 2004, West Virginia.

Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri

Year 2025, Volume: 7 Issue: 3, 349 - 360

Abstract

Bu çalışmada, meşe talaşı, çay atıkları ve çam kozalağı biyokütlelerinden üretilen üç farklı pirolitik biyo-yağın destilasyon kalıntıları kullanılarak biyo-asfalt bağlayıcılar elde edilmiştir. İlk olarak, üç farklı biyokütleden piroliz yöntemiyle, oksijensiz ortamda azot gazı kullanılarak üç farklı biyo-yağ üretilmiştir. Üretilen pirolitik biyo-yağlar, destilasyon deneyine tabi tutularak hafif ürünler ayrıştırılmıştır. Üç farklı pirolitik biyo-yağdan elde edilen destilasyon kalıntıları, ayrı ayrı %10 oranında 50/70 saf bitüme eklenerek, 135±1°C sıcaklıkta, 1200 rpm hızla 30 dakika karıştırılmış ve üç farklı biyo-asfalt bağlayıcı elde edilmiştir. Bağlayıcıların kıvamları, sıcaklık hassasiyetleri ve viskozite değerleri, penetrasyon, yumuşama noktası, PI (penetrasyon indeksi) ve dönel viskozimetre (RV) deneyleri kullanılarak belirlenmiştir. Buna ek olarak, tüm bağlayıcıların FTIR (Fourier Dönüşümlü Kızılötesi) Spektroskopisi analiz sonuçlarından elde edilen fonksiyonel grupları belirlenmiştir. Analiz sonuçlarına göre, saf bitüm ile karşılaştırıldığında, biyo-asfalt bağlayıcılarda 1739,21 cm-1 ve 1216,56 cm-1 civarındaki pik şiddetlerinin daha fazla olduğu belirlenmiştir. Meşe talaşı, çam kozalağı ve çay atıkları biyo-yağı destilasyon kalıntısı katkılı biyo-asfalt bağlayıcıların yumuşama noktalarının, 50/70 saf bitümün yumuşama noktası değerinden, sırasıyla yaklaşık %8, %10 ve %12 oranlarında daha düşük olduğu tespit edilmiştir. Buna ek olarak, bu çalışmada, %10 çay atıkları pirolitik biyo-yağı destilasyon kalıntısı katkılı biyo-asfalt bağlayıcının en yumuşak kıvamlı bağlayıcı olduğu ve en düşük viskozite değerine sahip bağlayıcı olduğu belirlenmiştir.

Thanks

Yazar, bu çalışmadaki FTIR analizleri için Hacettepe Üniversitesi İleri Teknolojiler Uygulama ve Araştırma Merkezi’ne teşekkür eder.

References

  • R.N. Hunter, A. Self, J. Read, The Shell Bitumen Handbook, 6th ed., Shell International Petroleum Company Ltd., London, UK, 2015. ISBN: 978-0-7277-5837-8.
  • J. Pais, C.R. Santos, M. Cabette, L. Hilliou, J. Ribeiro, H. Wang, M.R.M. Hasan, Feasibility of using bio-oil from biodiesel production for bio-bitumen creation, Road Materials and Pavement Design. 24 (S1) (2023), 209-228. doi: 10.1080/14680629.2023.2180305
  • L.P. Ingrassia, X. Lu, G. Ferrotti, F. Canestrari, Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: towards more sustainable materials in road pavements, Journal of Traffic and Transportation Engineering (English Edition). 7 (2) (2020), 192-204. doi: 10.1016/j.jtte.2019.04.003
  • S. Lv, J. Liu, X. Peng, M. Jiang, Laboratory experiments of various bio-asphalt on rheological and microscopic properties, Journal of Cleaner Production. 320 (2021), 128770. doi: 10.1016/j.jclepro.2021.128770
  • X. Cao, Y. Quan, M. Deng, B. Tang, and L. Kong, Progress and perspective of bio-asphalt preparation, structural characterization, and rheological properties, Energy Fuels. 38 (2024), 1657-1675. doi:10.1021/acs.energyfuels.3c04021
  • N. Su, F. Xiao, J. Wang, L. Cong, S. Amirkhanian, Productions and applications of bio-asphalts-Review, Construction and Building Materials. 183 (2018), 578–591. doi: 10.1016/j.conbuildmat.2018.06.118
  • Y. Ding, B. Shan, X. Cao, Y.Liu, M. Huang, B. Tang, Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose, Journal of Cleaner Production. 288 (2021), 125586. doi: 10.1016/j.jclepro.2020.125586
  • M. Deng, X. Cao, Z. Li, X. Li, X. Yang, B. Tang, Investigating properties and intermolecular interactions of sludge bio-oil modified asphalt, Journal of Molecular Liquids. 360 (2022), 119415. doi: 10.1016/j.molliq.2022.119415
  • S. Algarni, V. Tirth, T. Alqahtani, S. Alshehery, P. Kshirsagar, Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development, Sustainable Energy Technologies and Assessments. 56 (2023), 103098. doi: 10.1016/j.seta.2023.103098
  • S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassilev, An overview of the chemical composition of biomass, Fuel. 89 (2010), 913–933. doi:10.1016/j.fuel.2009.10.022
  • A.V. Bridgwater, Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal. 91 (2003), 87–102. doi: 10.1016/S1385-8947(02)00142-0
  • B. Akgayev, S. Akbayrak, M. Yılmaz, M.S. Büker, V. Ünsür, Assessing the feasibility of photovoltaic systems in Türkiye: Technical and economic analysis of on-grid, off-grid, and utility-scale PV installations, Necmettin Erbakan University Journal of Science and Engineering. 6(1) (2024), 69-92. doi: 10.47112/neufmbd.2024.33
  • E. Hançer Güleryüz, D.N. Özen, Exergo-economic analysis of an geothermal based organic rankine cycle, Necmettin Erbakan University Journal of Science and Engineering. 6(2) (2024), 312-335. doi: 10.47112/neufmbd.2024.50
  • R. Büyükzeren, M.N. Kaya, A.A. Bacakoğlu, M. Uçar, H.B. Altıntaş, A. Öztürk, A.Y. Bilici, Investigation of the tower height and turbulence ıntensity on horizontal axis wind turbines, Necmettin Erbakan University Journal of Science and Engineering. 6(3) (2024), 566-582. doi: 10.47112/neufmbd.2024.66
  • A. Demirbaş, The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis, Fuel Processing Technology. 88 (2007), 591–597. doi: 10.1016/j.fuproc.2007.01.010
  • K. Drugkar, W. Rathod, T. Sharma, A. Sharma, J. Joshi, V.K. Pareek, L. Ledwani, U. Diwekar, Advanced separation strategies for up-gradation of bio-oil into value-added chemicals: A comprehensive review, Separation and Purification Technology. 283 (2022), 120149. doi: 10.1016/j.seppur.2021.120149.
  • P. Adams, T. Bridgwater, A. Lea-Langton, A. Ross, I. Watson, Chapter 8-Biomass Conversion Technologies, P. Thornley and P. Adams (Ed.), Greenhouse Gas Balances of Bioenergy Systems, Elsevier, 2018: ss. 107-139. doi:10.1016/B978-0-08-101036-5.00008-2
  • R.A. Kinsara, A. Demirbaş, Upgrading of crude oil via distillation processes, Petroleum Science and Technology. 34(14) (2016), 1300-1306. doi: 10.1080/10916466.2016.1200080
  • X. Guo, S. Wang, Z. Guo, Q. Liu, Z. Luo, K. Cen, Pyrolysis characteristics of bio-oil fractions separated by molecular distillation, Applied Energy. 87 (2010), 2892–2898. doi: 10.1016/j.apenergy.2009.10.004
  • Y.H. Chan, S.K. Loh, B.L.F. Chin, C.L. Yiin, B.S. How, K.W. Cheah, M.K. Wong, A.C.M. Loy, Y.L. Gwee, S.L.Y. Lo, S. Yusup, S.S. Lam, Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects, Chemical Engineering Journal. 397 (2020), 125406. doi: 10.1016/j.cej.2020.125406
  • S. Terzi, M. Saltan, K. Armağan, A.K. Kurtman, Ş. Karahançer, E. Erişkin, V.E. Uz, Bitumen expanding using bio-oil product of rose pulp’s pyrolysis process, Construction and Building Materials. 249 (2020), 118721. doi: 10.1016/j.conbuildmat.2020.118721
  • B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, Second Edition, CRC Press Taylor & Francis Group, 2011.
  • ASTM-D5, Standard Test Method for Penetration of Bituminous Materials, West Conshohocken, 2006.
  • ASTM-D36, Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus), West Conshohocken, 2006.
  • ASTM-D-4402, Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, 2002.
  • J.P. Zaniewski, M.E. Pumphrey, Evaluation of performance graded asphalt binder equipment and testing protocol, Technical Report, West Virginia Division of Highways, 2004, West Virginia.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Transportation Engineering
Journal Section Research Article
Authors

Neslihan Atasağun 0000-0003-2026-6888

Early Pub Date November 29, 2025
Publication Date December 1, 2025
Submission Date November 12, 2024
Acceptance Date January 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

APA Atasağun, N. (2025). Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 7(3), 349-360.
AMA Atasağun N. Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri. NEJSE. November 2025;7(3):349-360.
Chicago Atasağun, Neslihan. “Farklı Pirolitik Biyo-Yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-Asfalt Bağlayıcıların Viskoziteleri Ve FTIR Analizleri”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 7, no. 3 (November 2025): 349-60.
EndNote Atasağun N (November 1, 2025) Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7 3 349–360.
IEEE N. Atasağun, “Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri”, NEJSE, vol. 7, no. 3, pp. 349–360, 2025.
ISNAD Atasağun, Neslihan. “Farklı Pirolitik Biyo-Yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-Asfalt Bağlayıcıların Viskoziteleri Ve FTIR Analizleri”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 7/3 (November2025), 349-360.
JAMA Atasağun N. Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri. NEJSE. 2025;7:349–360.
MLA Atasağun, Neslihan. “Farklı Pirolitik Biyo-Yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-Asfalt Bağlayıcıların Viskoziteleri Ve FTIR Analizleri”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 7, no. 3, 2025, pp. 349-60.
Vancouver Atasağun N. Farklı Pirolitik Biyo-yağların Destilasyon Kalıntıları Kullanılarak Elde Edilen Biyo-asfalt Bağlayıcıların Viskoziteleri ve FTIR Analizleri. NEJSE. 2025;7(3):349-60.